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PREFACE

The preface tries to answer the question, “Why Logic?”
Every civilization in the world developed complex languages in which they can

express facts, feelings etc. These natural languages also give freedom to make am-
biguous statements. Here is an example.

Noam Chomsky: “The �sh is ready to eat!"

The natural understanding is that there is a cooked �sh on the table which can
now be eaten. The statement could also mean that the �sh is hungry and wants to
eat. Languages also allow for multiple meanings to a word. This can also lead to
ambiguous statements. Someone asking to pick up the mouse, could mean picking
up a computer mouse or a real mouse.

Mathematicians realized that one should develop a language for mathematics
which does not allow one to make ambiguous statements. There should not be any
doubt on the meaning mathematicians give to statements and theorems. In short,
there should not be freedom to make ambiguous statements. The formal languages
were developed to express properties unambiguously. Programming languages like
C, C++ fall in this class of languages. In this book, we will see a few others like
propositional logic, �rst order logic etc.

Amartya Sen has a book titled “Argumentative Indian” which looks at Indian
history of verbal �ghts. This, though is not a unique Indian trait. Wherever there
were humans they argued. They also thought about what is a correct argument. The
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viii PREFACE

ancient Greeks, Indian, Chinese civilization all contemplated on “how to argue?”
Let us start with a statement credited to Socrates.

Socrates: “All men are mortal. I am a man. Therefore, I am mortal.”

Intuitively, we all agree to this reasoning of Socrates. Let us look at another argu-
ment mentioned in Nyayasutra.

Person A: “If there is �re, then there is smoke. There is no smoke on the hill.

Therefore there is no �re.”

Compare the above statement with the following wrong argument.
Person B: “If there is �re, then there is smoke. There is smoke on the hill. Therefore

there is �re.”

Both the arguments says that, “If there is �re, then there will be smoke”. Person A,
sees no smoke on the hill. He can therefore come to the conclusion that there is no
�re. Because, if he assumes there was �re in the hill, it would have created smoke.
On the other hand, the statement of Person B is wrong, since the smoke he sees
could have been created because of some other reason other than �re.

In the last century, mathematicians observed that there is another fundamen-
tal problem with natural languages (other than the freedom to make ambiguous
statements). These languages have the ability to make statements which talk about
itself. This can lead to Paradoxes. Let us look at a few examples to illustrate this.

Barber’s Paradox: There is a village with a barber. He shaves every man in the

village who does not shave himself.

The paradox (attributed to Russell) leads to a contradiction when one asks the
question, Does the barber shave himself? If he shaves himself, then he shaves some-
one who shaves himself (a contradiction). On the other hand, if he does not shave
himself, he is not shaving a man who does not shave himself (another contradic-
tion). Either way, it leads to a contradiction. The only conclusion we can make of
this is, there is no such barber in any village. Russell, being an atheist, took this
argument to troll believers

Russell: “Can God create a planet, so heavy that he/she cannot lift it?”

A positive or negative answer to the above question, leads to the conclusion
that there are things which God cannot do. The statements we saw above are self-

referential. That is, those statements talk about itself. But neither of the above
statements are a problem. The �rst statement leads to a contradiction on the ex-
istence of a barber who shaves himself, the second on the notion that God can do
anything. The following paradox looks correct but is not a well-de�ned sentence.

Berry’s Paradox: Let S be the set of natural numbers that can be described by a

sentence of less than 100 letters.

For example, S contains the number “one lakh”, “twenty multiplied with one
lakh” etc. Clearly S is a �nite set, since atmost there S can contain 2799 numbers (the
26 letters of the english alphabet and the blank space). Now consider the following
number x which is the “smallest positive number which cannot be described by
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less than 100 letters”. Observe that x is in S because its de�nition has less than
100 letters. On the other hand, x is not in S because it cannot be described in less
than 100 letters. Where are we wrong? The problem is with the de�nition of S. We
allowed for self-reference.

Berry’s paradox and similar others lead to a serious introspection on how to
de�ne sets in the last century. This resulted in a proper study of set theory and
logic. Many remarkable ideas came through. The most prominent among them are
the Incompleteness results of Gödel.

To summarize our discussion on the need of formal languages. As we observed
above, natural languages can make ambiguous statements and imprecise arguments.
We therefore look at Logic for the following two reasons.

1. Write statements unambiguously.

2. Reason correctly.

We are interested in creating a language in which mathematical proofs can be
written. The language should be simple enough so that vague and ambiguous state-
ments cannot be written. On the other hand, it should be powerful enough for
proofs to be written. We will build a language in which all of mathematics can be
embedded.





PART I

PROPOSITIONAL LOGIC





CHAPTER 1

SYNTAX AND SEMANTICS

1.1 Syntax: the rules

We begin with propositional logic, the foundation on which other logics are built
on.

We say that true and false are boolean values. They will be denoted by the sym-
bols T and F respectively. Declarative sentences are statements which can be as-
signed either true or false. For example,

1. Gravity attracts light.

2. 179179 is a composite number.

3. Sun rises in the east and Japan is in Europe

4. Kattapa killed Bahubali.

5. P = NP

6. John Snow’s father is Ned Stark

Logic for CS, First Edition.
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4 SYNTAX AND SEMANTICS

Since the number 179179 is divisible by 7,11,13 and 179, statement (1) is true. On
the other hand statement (2) is false since Japan is not in Europe. Statement (3) is
true. We do not yet know whether Statement (4) is true or false but the statement
as such can be assigned true or false. Statement (5) is true or false depending on till
which episode you have watched game of thrones.

The following statements are not declarative

1. What is the time?

2. Submit your assignments today.

3. Teek Hai!

Some declarative statements can be thought of as atomic . That is, those state-
ments cannot be further split into logical sentences. In the above example Statement
(2) is not atomic because it can be split into sentences “Sun rises in the east” and
“Japan is in Europe”.

As mathematicians we are not interested in identifying whether declarative sen-
tences are true or not in reality. That is, we are not interested in �nding out if
“Gravity attracts light". We leave this to physicists. Rather we are interested in
only what we can infer from the fact that such a statement is true or false. For
example, consider the following statement.

“If it rains in Delhi today, you will fail in logic course."

This is a weird statement but the statement is a declarative statement. That is, it
can either be true or false. To summarize the point being made. We are not really
interested in the weirdness or the reality of the real world. We are only interested
in statements which can be assigned boolean values.

Hence we can replace atomic sentences by symbols called propositions (or propo-
sitional variables) We will usually denote propositions by p, q, r , … or p1, p2, … .
Propositions can be combined using the following logical connectives or logical sym-

bols .
(, ), ¬, ∧, ∨,⇒

By repeatedly using logical connectives we can make complex declarative state-
ments. A formula is a word over the propositions and logical symbols. For example,
p ⇒, (p ∧ q) are formulas. Consider the following sentence.

If x is prime and x ≠ 2, then x is odd

The two declarative sentence“x is prime" and “x ≠ 2" implies the third “x is odd".
In other words this statement can be wrriten as follows

(“x is prime" ∧ “x ≠ 2") ⇒ “x is odd"

If the propositions p, q, and r stands for “x is prime", “x ≠ 2" and “x is odd", then
the statement can be written in propositional logic as

((p ∧ q) ⇒ r)

This way we can build complex logical statements. This logic build using the propo-
sitions and the logical symbols will be called propositional logic. We denote propo-
sitional formulas by greek letters like �, �, 
 , … etc or �1, �2, … etc. Just like natural
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languages have rules to build meaningful sentences, to write complex statements
in propositional logic, one needs to follow a set of rules. These rules are called the
syntax of propositional logic. A formula which is build by using these rules is called
a well-formed formula (w�). To formally de�ne w�s we need to �rst understand
inductive de�nition .

De�nition 1.1 (inductive de�nition) There are three requirements for an induc-

tive de�nition.

1. A universal set, denoted by U .

2. A core set (usually �nite) denoted by C such that C ⊆ U .

3. A �nite set of functions (denoted by  = {f1, f2, … , fk}) such that for all f ∈  , f
is a function from tuples of U to U . That is f ∶ U × U × ⋯ × U → U .

We say that the set inductively de�ned by C and  is the smallest set which contains

the core set C and is closed under all the functions f ∈  . This set will be denoted as
1
:

 (U , C, F) = {the smallest set which contains C and is closed under all f ∈ }

Note on inductive de�ntion: For sets X and U , we say that X ⊆ U is closed
under a function f ∶ U n → U , if for every a1, a2, … , an ∈ X , we have that
f (a1, a2, … , an) ∈ X .

Let us look at an example for inductive de�nition.

EXAMPLE1.1

We want to de�ne the set of all your blood relatives. We can inductively
de�ne this using {you} as the core set and the functions,  = {son of,
daughter of, �rst child of, and immediate younger sibling of }. That is,

your relatives =  (Humans, {you}, )

This lemma is important for the understanding of inductively de�ned sets.

Lemma 1.1 For any U , C, , we have that

 (U , C, ) = ⋂{X ⊆ U | C ⊆ X and X is closed under f ∈ }

We can now de�ne well formed formulas inductively (also see Figure 1.1).

De�nition 1.2 (well formed formulas) Awell-formed formula (w�) is inductively
de�ned as the smallest set of formulas which contains

1the reason for choosing this notation will be clear when we talk about natural deduction
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� �
∧

(� ∧ �) � �
∨

(� ∨ �)

� �
⇒

(� ⇒ �)

� ¬
(¬�)

Figure 1.1 Pictorial representation for the operators ¬, ∨, ∧ and ⇒

1. the propositions and

2. If � and � are w�s then (¬�), (� ∨ �), (� ∧ �), (� ⇒ �) are w�s.

In other words

w� =  (all formulas , propositions , {¬, ∨, ∧,⇒})

Here are some examples of w�s: (¬p1), (p1 ⇒ (p2 ∧ p3)), (p1 ∨ (p2 ∧ p3)).

De�nition 1.3 A construction sequence for aw� � is a �nite sequence �1, �2, … , �n =
� such that each �i is either a proposition or is a result of applying one of the rules of

w� to �j , �k where j, k < i.

Here is an example.

EXAMPLE1.2

A construction sequence for the formula (p1 ⇒ (p2 ∧ p3)) is

p2, p3, (p2 ∧ p3), p1, (p1 ⇒ (p2 ∧ p3))

Here is another sequence for the same formula.

p1, p2, p3, (p2 ∧ p3), (p1 ⇒ (p2 ∧ p3))

Thus a w� can have multiple construction sequences. The following claim follows
from the de�nition of w�.

Claim 1.2 Every w� formula � has a construction sequence.
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Thus a “proof" of a formula � being a w� is a construction sequence for it. Another
interesting question is, what is the proof of a formula � not being a w�? The idea
is to identify a property which is satis�ed by all w�s and not satis�ed by � . But,
how do you show that a property is satis�ed by all w�s. The answer is structural
induction .

Claim 1.3 The formula (p1 ∧ p2 is not a w�.

Proof : We show that all w�s satisfy the following property.
Induction hypothesis: For any w� � , the number of left brackets is equal to the

number of right brackets.
The proof is by structural induction. It is easy to note that the hypothesis is true

for the base case (which is a proposition). So, let us assume that the hypothesis is
true for � and � . We need to show that the hypothesis holds for (¬�), (� ∨�), (� ∧�)
and (� ⇒ �). It is easy to observe that this is indeed the case. Therefore the number
of left brackets in a w� is equal to the number of right brackets.

Since (p1 ∧ p2 does not satisfy this property, it is not a w�.

Structural Induction: This is equivalent to ordinary induction. But this form
of induction is more suited to inductively de�ned sets. In other words, if you
want to show that a property holds for all elements x ∈  (U , C, ), a property
holds for x , you need to do the following.

1. Show that the property holds for all elements x ∈ C and

2. Show that if a1, a2, … , an satis�es this property then for all f ∈  , the
element f (a1, a2, … , an) also satis�es this property.

The following algorithm applies the above property inductively to check if a
given formula is a w� or not.

Problems

1.1 Can you give an inductive de�nition of

1. The set of all positive integers.

2. The set of all integers.

3. The set of all even numbers.

1.2 Prove the following using structural induction.

1. The number of left brackets is greater than the number of right brackets for
any strict pre�x of a w�.
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Algorithm 1 Check if a formula is a w� or not
Input A formula � (word over symbols Σ)
Output: yes if � is a w�, otherwise no

1: function is-wff(�)
2: if (� is a proposition) then return yes ⊳ � is a w�
3: if (� does not have equal number of opening and closing brackets) then
4: return no ⊳ � is not a w�
5: end if

6: if (� is of the form (¬�)) then return is-wff(�)
7: Let ∼∈ {∧, ∨,⇒}.
8: if � is (� ∼ 
 ) and � has equal number of opening and closing brackets then
9: if ((is-wff(�) = yes) and (is-wff(
 ) = yes) then return yes

10: end if

11: return no ⊳ All other case � is not a w�
12: end function

1.3 Suppose � is a w� which doesn’t use any negation symbol, show that the
length of � is odd.

1.4 Show that all the w�s have balanced parenthesis.

1.5 Let S be a set of all subformulas of � . Prove that |S| ≤ |�|. (here, |� | denotes
the length of the formula �).

1.6 De�ne recursively the following notions about propositional formulas.

1. Atoms(�) is the set of all propositions occurring in � .

2. SF (�) is the set of all sub formulas of � .

3. |� | denotes the length of the formula.

1.2 Semantics: the meaning

We will denote true by T and false by F. The logical connectives we will be interested
in and their semantics follow

Negation For any sentence, its negation is the opposite of it. For example, the
negation of “Kattapa killed Bahubali” is “Kattapa did not kill Bahubali”. Similarly
negation of “P=NP” is “P ≠NP”. The negation of a propositional symbol, p is denoted
as ¬p (and called negation of p). If the p is true then ¬p is false. On the other
hand, if p is false, ¬p is true. The following truth table summarizes the semantics
of negation.
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p ¬p
T F
F T

Table 1.1 Truth table for negation

Conjunction stands for and. When it is used to connect two declarative sentences
it means that both the sentences are true. For example, “2 is a prime number” and
“2 is an even number”. We use the symbol ∧ to denote and. The following truth
table captures the meaning of ∧.

p q p ∧ q
T T T
T F F
F T F
F F F

Table 1.2 Truth table for conjunction

Disjunction stands for or. Disjunctions are slightly di�erent from the or we use in
English (or most natural languages). Assume that I made the following announce-
ment in class.

“Tomorrow there will be a lecture or an exam."

It is natural for you to assume that there will either be a lecture tomorrow and
no exam, or there will be an exam and no lecture. That is, you would never think
of the possibility of both a lecture and an exam going to be held tomorrow. But,
or used in a mathematical sentence, can mean both of them happening. This is the
di�erence of disjunction in or in logic and natural language. We have a name for the
or in natural language. We call it xor and is denoted by the symbol ⊕. See Exercise
1.4. Coming back to disjunction in logic, the symbol for or is ∨ and its semantics is
given by the following truth table.

p q p ∨ q
T T T
T F T
F T T
F F F

Table 1.3 Truth table for disjunction

The semantics for xor is given below.
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p q p ⊕ q
T T F
T F T
F T T
F F F

Table 1.4 Truth table for xor

Implication is used to state a necessary condition. It is denoted by the symbol ⇒.
The statment

If x is prime, then x ≠ 4

is an example of an implication. Typically it is written in the form “If p then q” and
in propositional logic as p ⇒ q. Its truth table is given in Table 1.5.

p q p ⇒ q
T T T
T F F
F T T
F F T

Table 1.5 Truth table for implication

We will explain the truth table with an example. Consider the statement
“If you work hard, you get good grades”.

The statement is true if you work hard and got good grade. On the other hand it
is false if you work hard and did not get good grades. The tricky question is, what
if you did not work hard and got good grades. Does this violate our the statement?
No, it doesnt and hence we can assign the statement to be true in this case also.
Similarly the statement is true, if we did not work hard and did not get good grades.

Implication is a little tricky to understand especially for beginners. Take a look
at the following puzzle.

Figure 1.2 Wason’s Puzzle: “If a card has a vowel on one side then it has an even number
on its opposite side". Which cards must one flip to check if the claim is correct?
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This puzzle is due to Wason. The following cards are kept on the table (see
Figure 1.2.). Each card has a letter on one side and a number on the other side.
We make the following claim: “If a card has a vowel on one side then it has an
even number on its opposite side". Which cards must one �ip to check if the
claim is correct?

Answer
The answer is cards A and 7. Let us look at each of the card and check

whether we need to �ip or not. Card A has to be �ipped, because we need to
be sure that on the opposite side is a vowel. Card K need not be checked. Why?
Because, it does not matter to us if, the opposite side has an even number or
odd number. Similarly we do not have to �ip 4 since it does not matter to us
whether the opposite side was vowel or consonant. On the other hand, card 7
has to be �ipped because we have to make sure it is not a vowel on the other
side. Because if there was a vowel, we would have violated the claim.

puzzle 1.2.1

We can write truth tables for w�s by inductively building the table. Consider the
following formula and its truth table: � ∶∶= ((p ⇒ ¬q) ⇒ (q ∨ ¬p))

p q ¬p ¬q p ⇒ ¬q q ∨ ¬p �
T T F F F T T
T F F T T F F
F T T F T T T
F F T T T T T

Table 1.6 Truth table for � ∶∶= ((p ⇒ ¬q) ⇒ (q ∨ ¬p))

EXAMPLE1.3

If and only if (written also as i� ) is used to denote a necessary and su�cient
condition. In symbolic form it is denoted by ⇔. Semantically p ⇔ q is equiv-
alent to p ⇒ q and q ⇒ p. The truth table is given below.

p q p ⇔ q
T T T
T F F
F T F
F F T

Table 1.7 Truth table for if and only if
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1.3 Boolean functions

A function f is called a boolean function if f ∶ {T, F}n → {T, F} takes as input T or
F values and outputs T or F. We can see every w� as a boolean function. What is the
boolean function associated with a w� �? The truth table gives this function. For
example the boolean function associated with the w� (p ∧ q) is the function which
takes (T,T) to T and all other inputs to F. An interesting question to ask is, can all
boolean functions be captured by w�s.

Lemma 1.4 Let f ∶ {T, F}n → {T, F} be an arbitrary boolean function. Then there

exists a w� � such that the boolean function associated with � is f .

Proof :

We say that two formulas � and � are equivalent if for all assignments v from
propositions in � and � to boolean values, we have that v̂(�) = v̂(�). In other words,
the truth table is the same for both the formulas. If � and � are equivalent, we will
denote it as � ≡ � .

We list some very important equivalent formulas below and leave the proof of
equivalence to the reader.

1. (De morgan’s law) (� ∧ �) ≡ ¬(¬� ∨ ¬�)

2. (De morgan’s law) (� ∨ �) ≡ ¬(¬� ∧ ¬�)

3. (double negation) ¬(¬�) ≡ �

4. (contrapositive) (� ⇒ �) ≡ (¬� ⇒ ¬�).

De�nition 1.4 (adequate functions) A set of boolean functions is adequate (also

called as complete ) if compositions of these functions can express any boolean func-

tion.

To prove that a set of functions is adequate we need to show that any truth table
can be expressed using a combination of the functions. The following claim is left
to the reader to prove.

Claim 1.5 The boolean functions represented by {¬, ∨, ∧} is adequate. It follows that,
{¬, ∧} is also adequate.

Here is another claim which can be proved by induction.

Claim 1.6 A set of boolean functions is adequate if and only if it can express any

binary boolean function.
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We know how to show that a set is adequate. How do we show that a set is
not adequate. We need to come up with a property which is not satis�ed by some
boolean function.

Claim 1.7 The set {∧, ∨,⇒} is not adequate.

Proof : We show by that: Every function f de�nable by these boolean functions
satis�es the condition that f (T,T, … ,T) = T. Showing this claim will prove that the
set is not adequate, since the boolean function de�ned by (¬p) does not satisfy this
condition.

The proof is by structural induction. It is clear that propositions satisfy this
claim. Let us assume that � and � satisfy this claim. It follows from the semantics
of ∧, ∨ and ⇒ that (� ∧ �), (� ∨ �) and (� ⇒ �) also satis�es the claim.

Problems

1.1 Show the following.

1. The symbols {∧,⇔, ⊕} form a complete set.

2. No strict subset of {∧,⇔, ⊕} form a complete set.

1.2 Check whether the following are a complete set or not.

1. {⇒, ¬}

2. {∨, ∧,⇒, ⟺ }

3. The NAND operator.

4. The NOR operator.

1.4 Types of formulas

1.4.1 Semantics based special formulas

Let  = {p1, p2, … , pn} be a set of propositions and let � be a w� over  . Then
an assignment v ∶  → {T, F} is a mapping from the propositions to T or F.
Since a proposition can be assigned only one of two values, there are 2n di�erent
assignments possible for n propositions.

EXAMPLE1.4

Consider the formula (p ∧ q). One particular assignment is p is mapped to T
and q to F.
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We can extend an assignment to the propositions to a function from w�s to boolean
values as follows. Let v ∶  → {T, F} be an assignment for the propositions  .
We extend this to v̂ ∶ w� → {T, F} which is inductively de�ned as follows.

1. v̂(�) = v(�) if � is a proposition.

2. v̂(¬�) = T if and only if v̂(�) = F

3. v̂(� ∧ �) = T if and only if v̂(�) = T and v̂(�) = T

4. v̂(� ∨ �) = T if and only if v̂(�) = T or v̂(�) = T

5. v̂(� ⇒ �) = F if and only if v̂(�) = T and v̂(�) = T

We say that an assignment v satis�es a w� � if v̂(�) = T. A w� � is satis�able if
there exists an assignment v such that v satis�es � . If no such assignment exists,
then the formula is said to be not satis�able (also called contradiction or unsatis�able
). A formula � is valid (tautology ) if all possible assignments satis�es � . Here are a
few examples.

EXAMPLE1.5

1. The formula ¬p is satis�able. The assignment v(p) = F satis�es ¬p.

2. The formula p ∨ ¬p is valid.

3. The formula p ∧ ¬p is not satis�able.

We leave the reader to prove the following claim.

Claim 1.8 The following statements hold for all w�s � .

1. � is valid if and only if ¬� is not satis�able.

2. � is not valid and satis�able if and only if ¬� is not valid and satis�able.

The following diagram represents the various types of well formed formulas.

1.4.2 Normal Forms: Syntax based special formulas

A literal is a proposition or a negation of a proposition. We can represent it in
grammar as follows

literal ∶∶= p | (¬p)

A conjunctive clause is a conjunction of literals and a disjunctive clause is a disjunc-
tion of literals.
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Valid

Satis�able

not satis�able

well formed formulas

Figure 1.3 Types of wffs

De�nition 1.5 (DNF) A formula � is said to be in Disjunctive normal form (DNF) if

� is disjunctions of conjunctive clauses.

C ∶∶= literal | (C ∧ C)

DNF ∶∶= C | (C ∨ C)

For example the formula (p1 ∧ ¬p2) ∨ (p2 ∧ p3) ∨ (¬p1 ∧ ¬p3) is in DNF.

De�nition 1.6 (CNF) A formula � is said to be in Conjunctive normal form (CNF)

if � is conjunctions of disjunctive clauses.

D ∶∶= literal | (D ∨ D)

CNF ∶∶= D | (D ∧ D)

The formula (p1 ∨ p2) ∧ (¬p1 ∨ ¬p2) is in CNF. We will now look at special CNF
formulas. A k-CNF formula is a conjunction of clauses with at most k-literals. For
example, the following is a 2-CNF formula

(p ∨ ¬q) ∧ (¬r ∨ s) ∧ (t ∨ q) ∧ ¬t

It is also a k-CNF formula for all k ≥ 2. On the other hand, this is not a 2-CNF
formula because it has a disjunction of 3 literals.

(p ∨ q ∨ ¬r)

The above formula though is a 3-CNF formula. The set of all 3-CNF formulas is a
subset of the set of all CNF formulas.
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The following fact about CNF and DNF formulas make them interesting. It says
that there exist equivalent formulas in CNF and DNF for any w�.

Lemma 1.9 For any w� � , there is a CNF formula � and a DNF formula 
 such that

� ≡ � and � ≡ 
 .

Proof : We prove the existence of both � and 
 by structural induction. The case
when � is a proposition satis�es the lemma trivially. The inductive step .... (need to
be �lled)

The above lemma can be made into an algorithm to output an equivalent CNF
(or DNF formula) when a w� is given as input. Exercise 1.3 asks you to give the
algorithm and compute its running time. You would observe that, the worst case
running time of the algorithm is exponential in the input size (2n when n is the size
of the w�). As of now, we do not know of a polynomial time running algorithm
to do this. In fact, theoretical computer scientists believe this is not possible. This
corresponds to the famous P ≠ NP? problem introduced in the next chapter.

Problems

1.1 Show that the following formulas are equivalent.

1. p ⇒ q

2. (¬q ⇒ p)

3. ¬p ∨ q

What is the complement of p ⇒ q?

1.2 [DeMorgan’s law] Show that p ∧ q ≡ ¬(¬p ∨ ¬q) and p ∨ q ≡ ¬(¬p ∧ ¬q)

1.3 Give an algorithm which outputs the equivalent CNF and DNF formula when
a w� is given as input. Also compute the worst case running time of your proposed
algorithm.

1.4 The following exercise connects xor and disjunctions. Write a formula using
only the symbols disjunctions and negations which is equivalent to p ⊕ q.

1.5 Consider you are given a truth table with propositions p1, … , pn . Give an
algorithm which outputs a formula (using only symbols ∨, ∧, ¬) having the same
truth table.

These exercise (along with demorgan’s law) show that any formula can be con-
verted into an equivalent formula which uses only the symbols ∧ and ¬.

1.6 Convert any formula into an equivalent formula which uses only symbols ∧
and ¬.

1.7

1. Give a formula which is a tautology?
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2. Give a formula which is satis�able but not a tautology?

3. Give a formula which is a contradiction?

1.8 Prove the following statements.

1. Γ ⊨ � i� Γ ⊆ {¬�} is unsatis�able.

2. Γ ⊨ � ⇒ � i� Γ ⊆ {�} ⊨ �

1.9

1. Write an algorithm to convert a formula in DNF to CNF.

2. Give a polynomial time algorithm to check whether a DNF formula is satis�-
able or not.

3. Give an algorithm to check whether a CNF formula is satis�able or not. How
much time does it take?

1.10 Prove that for every formula � there exists formulas � in disjunctive normal
form and 
 in conjunctive normal form such that � ≡ � and � ≡ 
 .

1.11 Give an example of propositional formula � of size n such that converting
it to a CNF will lead to exponential size formula.

1.12 Construct CNF formulas equivalent to �1 to �n in Table 1.8.

p q r �1 �2 �3 �4
F F F T T F T
F F T F F T F
F T F F T T T
F T T F T F F
T F F T F T F
T F T T T F F
T T F F F F T
T T T T F T T

Table 1.8 Construct a CNF formula for the following truth functions.

1.13 Construct DNF formulas equivalent to �1 to �n in Table 1.8.

1.14 Check whether the following formulas are valid/satis�able/unsatis�able.
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1. ((p ∨ q) ⇒ p)

2. ((p ∧ q) ⇒ p)

3. ((p ⇒ q) ⇒ q)

4. ((¬(¬p)) ⇒ p)

5. (p ⇒ (p ∨ q))

6. (p ⇒ (p ∧ q))

7. (p ⇒ (p ⇒ q)) ⇒ (p ⇒ q)

8. ((p ⇒ r) ⇒ (q ⇒ r)) ⇒ ((p∨q) ⇒
r)

9. ((p ⇒ r) ⇒ ((¬p ⇒ r)) ⇒ r

1.15 Prove or Disprove the following statements

1. If a formula is valid, then it is satis�able.

2. If a formula � is unsatis�able, then (¬�) is valid.

3. If a formula is satis�able, then it is valid.

4. If a formula is valid, then it is not unsatis�able.

5. A formula, say � , is satis�able, then (¬�) is unsatis�able.

1.5 Applications of propositional logic

We use propositional logic to encode di�erent problems.

1.5.1 Reasoning

Consider the following statement by Socrates: “If I am guilty, I must be punished.
I’m guilty. Therefore, I must be punished." How do we encode this reasoning in
propositional logic. Let propositions p and q stand for the statements “I am guilty"
and “I must be punished" respectively. Therefore the entire reasoning can be ex-
pressed by the w�

� ∶∶= ((p ⇒ q) ∧ p) ⇒ q)
Consider a wrong reasoning: “If I am guilty, I must be punished. I’m not guilty. Thus
I must not be punished." By the same propositions, this reasoning can be expressed
as

� ∶∶= ((p ⇒ q) ∧ ¬p) ⇒ ¬q)
What is special about the formula � but not � . Can the w�s tell us one is correct

reasoning, whereas the other is not. In fact it does. � is a valid formula, whereas �
is not a valid formula. A reasoning will always lead to a valid formula.

1.5.2 Digital logic
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EXAMPLE1.6

We can view a proposition being assigned to 1 or 0 (in place of T or F). That
is a proposition p can be thought of as a bit variable. Extending the idea, a
valuation to a n proposition symbols can be thought of as an n-bit number.
Use this view to write a formula to encode addition relation between two n-bit
numbers. That is, write a formula which satis�es the following condition

p1p2…pn
+

q1q2…qn
=

r1r2… rn

View p1, … , pn , q1, … , qn , r1, … , rn as propositions.

Problems

1.1 [Pigeon hole principle] If n + 1 pigeons are placed on n holes, atleast one hole
will have more than one pigeon. This is the pigeon hole principle. Now, consider
n + 1 pigeons and n holes. Let proposition pi,j denote the fact that the itℎ pigeon
is in the jtℎ hole. Write a propositional logic formula to encode the pigeon hole
principle.

1.2 [puzzles from Smullyan] Use propositional logic to answer the following ques-
tions

1. You are trapped in a room. There are two doors. Either the doors lead to an
exit or to a lion (note that both leading to an exit or to a lion are also possible).
In Door 1, it is written “This door is exit and other door leads to lion". In Door
2, it is written “One of the rooms lead to exit, the other to a lion". You are told
that only one of the written statements are true and the other false. Which
door would you choose?

2. Similar to the previous question. You are trapped in a room. There are two
doors. Either the doors lead to an exit or to a lion (note that both leading to an
exit or to a lion are also possible). In Door 1, it is written “Atleast one of the
doors is an exit". In Door 2, it is written “There is a lion on the other door".
You are told that either both are true statements or both are false. Which door
would you choose?

3. One more question with same �avour. You are trapped in a room. There are
two doors. Either the doors lead to an exit or to a lion (note that both leading
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to an exit or to a lion are also possible). In Door 1, it is written “This door is
exit or the other door leads to lion". In Door 2, it is written “The exit is the
other door". The statements are either both true or both false. Which door
would you choose?

1.3 [Nyayasutra] Are the following arguments correct? Write the statements us-
ing entails.

1. If there is smoke, then there is �re. There is smoke on hill. Therefore, there is
�re.

2. Fire causes smoke. There is smoke on hill. Therefore, there is �re.

3. If there is smoke, then there is �re. There is no smoke. Therefore, there is no
�re.

1.6 Semantic entailment

In the previous sections, we saw the semantics of formulas. The truth table of a
formula tells us for what valuation makes the formula true or false. In this section,
we are interested in a relationship between formulas. Let us �rst de�ne semantic

entailment in its simpler form. Consider two formulas � and � .

De�nition 1.7 We say that � semantically entails � by the following notation.

� ⊨ �

It means that, for all valuations which make � true, � is also evaluated to true.

We can see semantic entailment in a non-mathematical setting as follows: In all
the worlds where � is true, � is also true. Let us look at an example

Planets have mass ⊨ There is gravity in planets

The example says that: Consider a world where planets have mass. Then planets
will also show gravity. In short, “Planets have mass" semantically entails the state-
ment “There is gravity in planets". This is a fact of the universe we live in. The
above example was used to press the meaning of ⊨ and is not really a good example
for mathematicians.

Mathematicians require precise de�nitions like de�nition 1.7. Below we gener-
alise this. Let Γ be a set of formulas and � a formula. Then

Γ ⊨ �
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denotes that for all valuations which make all formulas in Γ true, we have � is true.
Let us understand when Γ is �nite. That is Γ = {�1, �2, … , �n} for some n ∈ ℕ. We
take a little liberty in writing {�1, �2, … , �n} ⊨ � as

�1, �2, … , �n ⊨ �

That is, we skip the set notation when it is clear to the reader. The following ex-
ercises show the relation between semantic entitlement in the �nite case and the
implication relation.

Let us go back to the case when Γ is in�nite. There does not exist equivalent de�-
nitions like those in Exercise 1.3. This is because in�nite implication or conjunction
is not allowed in our logic.

There is one tricky case, we will elaborate on. Consider an arbitrary formula � .
Then

F ⊨ �

Let us go through the de�nition of semantic entailment. It says that for all valua-
tions which make the left hand side (here it is F) true, we have that � is true. This
is correct, since there is no valuation which makes F true. In other words, since
there is no valuation which make F true, the statement is vacuously true . What this
means is that F ⊨ ¬� and F ⊨ � . In short, if falsity is true, then anything is true.

Problems

1.1 Explain what the following statement mean?
If T ⊢ � , then T ⊨ � .

1.2 Show that the following statements are equivalent.

1. � ⊨ �

2. T ⊨ (� ⇒ �)

1.3 Extend the argument in the previous exercise, and show that the following
statements are equivalent.

1. �1, �2, … , �n ⊨ �

2. T ⊨ (�1 ⇒ (�2 ⇒ …(�n ⇒ �)))

3. T ⊨ (�1 ∧ �2 ∧ …�n) ⇒ �
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1.7 Compactness*

We say that a set Γ (�nite or in�nite) of propositional formulas is satis�able if there
is a valuation which makes all formulas in Γ true. The Problem 1.1 answers when a
�nite set satis�able.

The interesting question is, when is an in�nite set satis�able? The compactness
theorem says that if a set is unsatis�able, then there is a �nite set which is unsatis-
�able.

Theorem 1.10 (Compactness) Γ is satis�able if and only if for all �nite subsets

Y ⊆ Γ, Y is satis�able.

Proof : The forward direction of the proof is easy to see. Let us therefore show
the other direction. We assume Γ is unsatis�able and identify a �nite set which is
unsatis�able. Let us �rst enumerate the propositions used by the formulas in Γ as

p1, p2, …

We add a new proposition p0 (this is added just for ease of explanation and is not
fundamental to the proof) to this list. Now, we build an complete binary tree where
every node in the tree corresponds to a valuation for some �nite set of proposi-
tions. To be precise, a node at height t in the tree corresponds to a valuation for
all propositions {p0, p1, … , pt}. In short every node at height t corresponds to a
function v ∶ {p0, p1, … , pt} → {T, F}. We will inductively de�ne the valuation cor-
responding to every node. The root node (at height 0) corresponds to the function
v ∶ {p0} → {T, F}, such that v(p0) = T. Consider an arbitrary node at height t with
valuation v ∶ {p1, … , pt} → {T, F}. The valuation of its children extends v as fol-
lows. The left node corresponds to the valuation vl ∶ {p1, … , pt+1} → {T, F}where
vl (pt+1) = T and for all other propositions pi where i ≤ t , vl (pi) = v(pi). Similarly
the right node corresponds to vr ∶ {p1, … , pt+1} → {T, F} such that vr (pt+1) = F
and for all other propositions pi where i ≤ t , vr (pi) = v(pi).

We now trim the above in�nite tree as follows. Take a formula � ∈ Γ. If a valua-
tion v does not satisfy � , then remove all descendants of the node corresponding to
v (but keep the node v). Note that, if v does not satisfy Γ then any extension of v
also does not satisfy Γ. We do the above trimming for all formulas � ∈ Γ. We claim
that, the trimmed tree is a �nite tree. Assume not. Then there exists an in�nite
path in the tree. We claim that this represents a valuation v ∶ {p1, p2, … } → {T, F}
which satis�es all formulas in Γ. Assume not. Then there exists a formula � ∈ Γ
such that v does not satisfy � . Let � be over propositions {p1, … , pt}. There is a
valuation v′ ∶ {p1, … , pt} → {T, F} which extends to v, such that v′ does not
satisfy � . This leads to a contradiction. Hence the trimmed tree is a �nite tree.

Let V = {v1, v2, … , vk} be the set of all valuations in the leaf of the trimmed
tree. Therefore any valuation v extends atleast one of the vis in V . Now, for each
vi ∈ V we pick one �i ∈ Γ such that vi does not satisfy �i . Call this set Y =
{�1, �2, … , �k}. We claim Y is not satis�able. Assume not. Then there exists a
valuation v ∶ {p0, … , pt} → {T, F} which satis�es Y and t is the height of the
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trimmed tree. Since the tree is �nite there is an extension vi of v which does not
satisfy formula �i ∈ Y . This is a contradiction, since if vi satis�es �i , its extension
v should also. Hence, we have a �nite set Y which is not satis�able.

Problems

1.1 A �nite set Γ = {�1, �2, … , �n} is satis�able if and only if ⋀n
i=1 �i is satis�able.

1.8 Summary and Acknowledgements

The chapter is heavily in�uenced by the video lecture series of Dr. Shai Ben David
[BD]. The lectures itself follow the book by Enderton [End72]. The chapter also
follows the book by Huth and Ryan [HR04]. I would also like to thank Dr. Baskar
Anguraj (BITS Pilani, Goa) for sharing his logic exercise questions.

1.9 Chapter exercises

1.1 [Indian Puzzle championship 2010]* Fill in the grid in such a way that every
row and every column contains numbers from (1 − 5) exactly once. Some cells may
remain blank. The numbers inside the grid represent the height of the building
in the corresponding cell. The numbers outside the grid represent the number of
buildings visible from that direction. Encode the problem in propositional logic.

1.2 Which of the following are correct?
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1. p ∨ q ⊨ p

2. ¬q, p ∨ q ⊨ p

3. (p ⇒ q) ⊨ (¬q ⇒ ¬p)

4. p ⇒ q, s ⇒ t ⊨ (p ∨ s) ⇒ (q ∧ t)

5. (p ⇒ q) ∧ (p ⇒ r) ⊨ p ⇒ (q ∧ r)

6. p ∧ ¬p ⊨ (r ⇒ q)

1.3 What can we say about the following?

1. T ⊨ � 2. T ⊭ �

1.4 [[Smu82]] Consider three persons A, B, C who need to sit in a row, but: (a)
A does not want to sit next to C. (b) A does not want to sit in the left chair. (c) B
does not want to sit to the right of C.

Write a propositional formula that is satis�able if and only if there is a seat as-
signment for the three persons that satis�es all constraints. Is the formula satis�-
able? If so, give an assignment. Clearly mention the meaning of each proposition.

1.5 Let � and � be arbitrary propositional formulas. Is the following correct?

If (� ⇒ �) then (� ⇒ (¬�))

If yes, argue why? Otherwise, give an example when this is wrong.

1.6 [Smullyan [Smu85]] In an island every inhabitant is either type T and makes
only true statements, or type F and makes only false statements. Mr. Holmes hears
gold is buried in the island. He goes there, meets an inhabitant and asks him, “Is
there gold in this land?" The inhabitant replies, “If I am of type T, then there is gold
here." Answer the following?

(a) What is the inhabitant’s type?

(b) Is gold buried in this island?

1.7 [Logicians in the co�ee bar] Three logicians walk in to a co�ee bar, and is
subsequently greeted by the waiter who asks, “Would all of you like to drink cof-
fee?". The replies of the logicians are given below,
Logician 1 : “I don’t know"
Logician 2 : “I don’t know"
Logician 3 : “Yes. Bring co�ee for all of us"
Provide an explanation for the responses of the logicians to the waiter’s question.

1.8 Write an algorithm which outputs the number of satisfying assignments of a
propositional formula. You can assume the input formula to be given in a form you
want (either as a string, or a parse tree etc).

1.9 Assume (� ⇒ �) is a tautology. Moreover � and � do not share a common
atomic proposition. Show that either � is unsatis�able or � is a tautology (or both).
Show that the assumption about not sharing atomic propositions is necessary.
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1.10 Let � be a formula over propositionsQ = {q1, … , qn}. � is neither a tautology
nor a contradiction. Let � be an arbitrary formula over propositions P = {p1, … , pn}
where P ∩ Q = ∅. Consider another formula  , got by replacing every occurrence
of p1 in � by � . Use mathematical induction to prove.

� is satis�able if and only if  is satis�able

1.11 Write the set of all subformulas of the following w� s.

1. (((p1 ⇒ p2) ⟺ (p1 ⇒ p3)) ⇒ p3)

2. (((p1 ∧ p2) ⇒ p3) ⟺ ((p1 ⇒ p2) ∨ (p1 ⇒ p3)))

1.12 Write derivation trees and derivation sequences for the following w� s.

1. (((p1 ⇒ p2) ⟺ (p1 ⇒ p3)) ⇒ p3)

2. (((p1 ∧ p2) ⇒ p3) ⟺ ((p1 ⇒ p2) ∨ (p1 ⇒ p3)))

1.13 Check whether the valuation v satis�es the w� s given below. v(p1) =
T, v(p2) = F , and v(p3) = T.

1. ((p1 ⇒ p2) ⇒ (¬p1))

2. (((p1 ⇒ p2) ∧ (p1 ⇒ p3)) ⟺ (p1 ⇒ (p2 ∨ p3)))

1.14 Let � be a w�, c be the number of places at which binary connectives occur
in � and s be the number of places at which atomic propositions occur in � . (For
example, if � is (p1 ⇒ (p2 ⇒ (¬p1))) then c = 2 and s = 3). Show by using
mathematical induction s = c + 1.

1.15 Prove (or disprove)

1. If T ⊨ p and T ⊨ (p ⇒ q), then T ⊨ q.

2. If V ⊨ p and V ⊨ (p ⇒ q), then V ⊨ q.

3. If � and (� ⇒ �) are satis�able, then � is satis�able.

1.16 Given n construct a set of formulas Γn of size n such that Γn is not satis�able,
but every proper subsetof Γn is satis�able.

1.17 Prove or Disprove the following statements. Given that Γ1, Γ2 are sets of
well formed formulas.

1. Γ1 ⊆ Γ2, Mod(Γ2) ⊆ Mod(Γ1)

2. Γ1 ⊆ Γ2, Mod(Γ1) ⊆ Mod(Γ2)

3. If Γ ⊨ � , then Mod(Γ) ⊆ Mod(�)
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1.18 Show that a valuation v satis�es the following formula i� v(pi) = F for an
even number of i’s, 1 ≤ i ≤ n.

(… (p1 ⟺ p2) ⟺ p3) ⟺ …) ⟺ pn)

1.19 [Relevance Lemma] Let v1 and v2 are two valuations such that v1(p) = v2(p),
for all propositions p ∈ Atoms(�) for some formula � . Prove that v1 ⊨ � i� v2 ⊨ � .
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CHAPTER 2

THE COMPUTATIONAL COMPLEXITY
OF SATISFIABILITY

2.1 P vs NP

De�nition 2.1 (Decision problem) A problem is a function, f ∶ U → V which

takes an input an element from a setU and outputs an element from a set V . A decision

problem is a function where V = {yes,no}. In other words the output of a decision

problem is yes or no.

Some examples of decision problems are

1. SAT: Check if a given w� is satis�able or not.

2. Primality: Check whether a positive integer is prime or not.

3. Searching: Check if an integer is in a list of integers or not.

The following are not decision problems although they can be converted into deci-
sion problems.

1. Sorting

2. Linear programming
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SAT
Input: A w� � .
Output: YES if � is satis�able, otherwise NO.

In a decision problem, an input is called an Yes instance if the problem outputs
Yes on this input. An instance is a No instance if it is not an Yes instance (that is, the
problem outputs No in this instance). Any problem can be modi�ed into a decision
problem as follows. Ask whether the itℎ output bit is a 1 or a 0? For example, here
is the sorting problem converted into a decision problem.

Decision version of Sorting
Input: A list of numbers, and an index i.
Output: YES if the itℎ bit in the sorted list of number is 1. Otherwise output

NO.

Thus we can talk about any problem as a decision problem. Note that an al-
gorithm to answer the decision version can be used to answer the non-decision
version.

De�nition 2.2 (P - polynomial time problem) The number of steps in a polyno-
mial time algorithm is polynomial in the size of the input. Polynomial time problems

(or commonly called as P) is the set of all problems which can be solved by a polynomial

time algorithm.

For example, Primality, Searching, Sorting etc are in P. Let us consider a problem
in propositional logic. In the DNF SAT problem, one needs to check if a DNF formula
is satis�able or not. This is a special case of the SAT problem.

DNF SAT
Input: A DNF formula � .
Output: YES if � is satis�able, otherwise NO.

This problem can be solved in polynomial time. Let � be a DNF formula. The
polynomial time algorithm takes each conjunctive clause of � and checks if it can
be satis�able or not. A conjunctive clause cannot be satis�ed if and only if the
clause contains both a proposition and its negation (see Exercise ??). If atleast one
of the conjunctive clause is satis�able then � is satis�able. If no conjunctive clause
is satis�able, then � is not satis�able.

What about checking if a w� � is satis�able or not. This problem is famously
called SAT. For a formula � with n propositions the truth table has 2n number of
rows. Therefore building the truth table and checking each row is a trivial way
to check for satis�ability. This algorithm though takes exponential time, since the
number of rows in the truth table is 2n . The interesting question is, does there exist
a faster algorithm. Or even better, does there exist a polynomial time algorithm.
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That is, an algorithm whose number of steps is O(nc ) for some constant c. It turns
out, we do not yet know the answer to this question. Most computer scientists think
there is no polynomial time algorithm for SAT. This is the biggest open problem in
computer science called

P = NP?

Let us now understand the class of problems called NP. Given a w� � and an as-
signment v to the proposition, we can check in polynomial time if v satis�es � .
It is easy to store the assignment v. It takes only O(n) size if n is the number of
propositions. We can think of v as a “proof" that � is satis�able, since if you want
to argue to someone that � is satis�able you only need to give the assignment v.
This proof is usually called the indexitcerti�cate. Thus, if � is satis�able, there is a
polynomial sized certi�cate of its satis�ability (namely the assignment v). In other
words, the Yes instance has a short certi�cate. The second point to consider is that,
there is a polynomial time machine which given the proof and the formula checks
if the assignment satis�es it or not. The class NP consists of all problems which
show similar behaviour. Surprisingly there are many problems which has a short
proof for the Yes instance
We will now de�ne the class of non-deterministic polynomial time problems (NP).

De�nition 2.3 (NP - non deterministic polynomial time problems) Aproblem

is in NP, if there exists a polynomial time algorithm and a polynomial p ∶ ℕ → ℕ
such that

1. For all Yes instance x , there exists a certi�cate y where |y| ≤ p(|x|) (that is, size of
y is polynomial in the size of x) such that (x, y) outputs Yes.

2. For all No instance x ,(x, y) = No for all certi�cates y where |y| ≤ p(|x|).

It follows from our discussion that

Theorem 2.1 SAT is in NP.

Let us look at a few more examples. The problem of Hamiltonian cycle is in
NP, since the certi�cate is the Hamiltonian cycle. Similarly k-clique problem, 3-
colorability, subset sum problem are all in NP. Here is a claim which holds because
all polynomial time problems has an empty certi�cate.

Claim 2.2 If a problem is in P, then it is in NP. That is,

P ⊆ NP

Consider the composite problem. It is clearly in NP, since you can have a poly-
nomial size certi�cate: a factor of x which is greater than 1 and less than x .

Composite
Input: A positive integer x
Output: YES if x is a composite number. No otherwise.
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What about the complement problem? That is the problem of whether a number
is prime or not. Clearly the no instance has a short certi�cate (namely a factor which
divides the number). Let us formally de�ne the complement problem.

De�nition 2.4 For a decision problem X , the complement decision problem (denoted

by X ) is the problem where

x is an yes instance of X if and only if x is a No instance of X

The complement problem for Composite is Primes. This leads to another complex-
ity class co-NP.

De�nition 2.5 (co-NP) The class co-NP consists of all problems whose complement

is in NP.

Examples of co-NP problems are precisely the complements of NP problems. Here
is an interesting problem. We leave the reader to identify why this problem is a
complement of an NP problem.

Validity
Input: A well formed formula �
Output: YES if � is a valid formula. No otherwise.
Complexity class: co-NP.
Certi�cate for No instance: An assignment which does not satisfy � .

Clearly co-NP problems has polynomial sized certi�cates for the No instances.
Here is an alternate de�nition of co-NP.

Theorem 2.3 If a problem is in co-NP, then there exists a polynomial time algorithm

 and a polynomial p ∶ ℕ → ℕ such that

1. For all No instance x , there exists a certi�cate y where |y| ≤ p(|x|) (that is, size of
y is polynomial in the size of x) such that(x, y) outputs No.

2. For all Yes instance x ,(x, y) = Yes for all certi�cates y where |y| ≤ p(|x|).

So, we know that Primes is in co-NP. Surprisingly, Primes is also in NP due to
some properties of numbers. Few years back, AKS showed that Primes is in P.

Primes
Input: A positive integer x
Output: YES if x is a prime number. No otherwise.
Complexity class: in P (by the AKS theorem).

The factorization problem is in both NP and co-NP. We do not yet know if the
problem is in P. In fact we do not believe it to be in P. The factorization problem is
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a foundational to cryptography. A polynomial time algorithm to do factorization
can lead to breaking all cryptographic protocols.

Factorization
Input: Positive integer x and y
Output: YES if there is a number z where 1 < z ≤ y

such that z divides x . Otherwise output No.
Certi�cate for Yes instance: A factor z.
Certi�cate for No instance: Prime factorization of x .
Complexity: NP ∩ co-NP.

Yet another problem which is in NP ∩ co-NP is the Parity games problem. The
problem is believed to be in P but we do not have a proof yet. Before we end this
subsection, we leave the reader to prove the following claims.

Claim 2.4

P ⊆ co-NP

Claim 2.5 If P=NP, then NP=co-NP. Contra-positively, if NP ≠ co-NP, then P ≠ NP .

The biggest open problem in computer science is the following conjecture.

Conjecture 2.6

P ≠ NP

2.2 SAT: Hardest among NP

In the last section, we saw that satis�ability of DNF can be done in polynomial time.
What about CNF? The problem of satis�ability of CNF formulas is called CNF SAT.
Can we solve this also in polynomial time?

Consider the following claim (Algorithm 2) which takes as input a w� � and
outputs a CNF formula � such that � is satis�able if and only if � is satis�able.
Note that the algorithm runs in polynomial time. What is the importance of this?
It shows that, if we have a polynomial time algorithm to solve CNF SAT, then there
is a polynomial time algorithm to solve SAT.

Theorem 2.7 There is a polynomial time algorithm which takes as input w�s and

outputs CNF formulas such that the output formula is satis�able if and only if the

input formula is satis�able.

Proof : We will give a reduction from SAT to CNF SAT. Let � be a propositional
formula. Our aim is to give a CNF formula �̂ such that � is satis�able if and only if
�̂ is satis�able. We �rst replace subformulas of the from (� ⇒ 
) in � by (¬� ∨ 
).
The second step is to push the negations to the propositions using De-Morgan’s
law. That is subformulas of type ¬(
 ∨ �) is replaced by ¬
 ∧ ¬� . Similarly, ¬(
 ∧ �)
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is replaced by ¬
 ∨ ¬� . This is done inductively until all negations apply to propo-
sitions. We now need to convert the formula into a conjunction of disjunctions. To
convert subformulas of the form (� ∧
 )∨ we introduce a new proposition p (which
is not present in the formula). We then replace (� ∧
 )∨ by ( ∨p)∧(� ∨¬p)∧(
 ∨¬p).
It is easy to see that the two formulas are equivalent with respect to satis�ability.
Inductively applying this translation will give us a CNF formula.

Algorithm 2 Convert w�s to CNF formula
Input A w� �
Output: A CNF formula � such that � is satis�able if and only if � is satis�able.

1: function wfftoCNF(�)
2: repeat

3: �′ = � .
4: Apply DeMorgan’s on � to push negations inside brackets.
5: Apply double negation law to simply formula.
6: Let � be the modi�ed formula
7: until �′ = � ⊳ On exit, negations appear only before propositions in � .

8: if � is a literal then return �
9: if � ∶∶= (�1 ∧ �2) then return (wfftoCNF(�1) ∧ wfftoCNF(�2))

10: if � ∶∶= (�1 ∨ �2) then
11: Let wfftoCNF(�1) = ⋀i �i
12: Let wfftoCNF(�2) = ⋀j 
j
13: Introduce a new proposition p
14: return (⋀i(�i ∨ p) ∧ ⋀j (
j ∨ ¬p))
15: end if

16: end function

What we have seen here is an example of polynomial time reductions . Let us
make this de�nition formal (also see Figure 2.1).

De�nition 2.6 (polynomial time reduction) A polynomial time reduction from

a problem X to a problem Y is an algorithm  which takes as input, instances of

problem X and outputs instances of problem Y such that for all input instance x of

problem X , x is an Yes instance if and only if (x) is an Yes instance of problem Y .

Here is another polynomial time reduction from CNF SAT to 3-CNF SAT.

Claim 2.8 There is a polynomial time reduction from CNF SAT to 3-CNF SAT.

Proof : We �rst show how to rewrite a disjunctive clause of the form � ∶∶= (p1 ∨
p2 ∨ ⋯ ∨ pk ). Introduce new propositions t1, t2, … , tk−2. The translated formula will
be

� ∶∶= (p1 ∨ p2 ∨ t1) ∧ (¬t1 ∨ p3 ∨ t2) ∧ ⋯ ∧ (¬tk−2 ∨ pk−1 ∨ pk )

We leave it to the reader to show that � is satis�able i� � is satis�able. It is now
easy to see how to translate conjunctions of disjunctions of formulas.
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Figure 2.1 Polytime reduction from problem X to Y : The reduction takes an Yes
(respectively No) instance in X to an Yes (resp. No) instance in Y .

We denote by X ≤p Y if there is a polynomial time reduction from X to Y .
Intuitively we imply that the problem Y is “harder" than problem X . This is because
if we can solve Y , then we can solve X . Let us write what we have learned in this
notation.

SAT ≤p CNF SAT ≤p 3-CNF SAT

Also note that 3-CNF SAT is a special case of CNF SAT which is a special case of
SAT. Hence this also holds

3-CNF SAT ≤p CNF SAT ≤p SAT

We observed that reductions help us order problems on the basis of its hardness.
What are the problems harder than all problems in NP?

De�nition 2.7 (NP-hard) A problem X is NP-hard, if there are polynomial time

reductions from all NP problems to X .

In the above de�nition, X is harder than all NP problems and therefore solving X
can solve all NP problems. Are there problems which are NP-hard? In a beautiful
result, Cook showed that there are NP-hard problems. Infact it is our favourite SAT
problem.

Theorem 2.9 (Cook’s) SAT is NP-hard.

We leave the proof of this claim. But once we know SAT is NP-hard, we have got
other problems which are NP-hard. Clearly CNF-SAT is NP-hard.

Claim 2.10 CNF-SAT is NP-hard.

Proof : To show that CNF-SAT is NP-hard, we need to show that there are polyno-
mial time reductions to it from all NP problems. Cook has saved us by showing that
there are polynomial time reductions from all problems to SAT. So, we only need to
show that there is a polynomial time reduction from SAT to CNF-SAT. We already
showed this in Theorem 2.7.

By a similar argument we also have that 3-CNF SAT is NP-hard. The next problem
is, what are the hardest problems in NP? These are called NP-complete problems.
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De�nition 2.8 (NP-complete) A problem X is called NP-complete if X satis�es

both the below conditions.

1. X is in NP.

2. X is NP-hard.

The following theorem is a consequence of our discussion till now.

Theorem 2.11 SAT, CNF-SAT, 3-CNF SAT are NP-complete problems.

Proof : We give the proof for SAT. A problem is NP-complete if it is both in NP and
is NP-hard. It follows from Theorem 2.1 that SAT is in NP and from Theorem 2.9
that SAT is NP-hard. Therefore SAT is NP-complete. We leave it to the readers to
argue why the other problems are NP-complete.

Let us show a problem in graph theory which is NP-complete. The clique prob-
lem takes as input a graph G and a number k and outputs yes if and only if the
graph has a k-clique (a set of k vertices such that there is an edge between all pairs
of these vertices).

Theorem 2.12 The clique problem is NP-complete.

Proof : It is easy to see that the problem is in NP.
We show that the problem is NP-hard by reducing from 3CNFSAT. Let Φ = (C1 ∧

C2 ∧⋯∧Ck ) be a 3CNF formula. Let us denote each of the clause Ci ∶∶= (l1i ∨ l2i ∨ l3i ).
We now give a graphG = (V , E) as follows. The vertices of the graphV are v1i , v2i , v3i
for all i ≤ k. We now have an edge between E(vti , vrj ) if

1. i ≠ j and

2. vti ≠ ¬vrj
The input to the clique problem is this graph G = (V , E) and number k. It is easy to
see that this translation takes polynomial time. We now show that the translation
is correct. In other words: Φ is satis�able if and only if G has a k-clique.

We have argued that there are polynomial reductions from all NP problems to
SAT. The next claim asks you to reduce to SAT from the Hamiltonian problem.

Claim 2.13 Give a polynomial time algorithm which takes as input a graph G =
(V , E) and outputs a w� � such that the graph has a Hamiltonian cycle if and only if �
is satis�able. Does the valuation whichmakes � true give us the cycle? [A Hamiltonian

cycle is a cycle which traverses every vertex exactly once.]

Since SAT is the hardest problem in NP, to solve the Conjecture 2.6 of P ≠ NP is
equivalent to show that there is no polynomial time algorithm for SAT. That is,

Claim 2.14 P ≠ NP if and only if SAT is not in P.

Proof : Clearly if SAT is not in P, then P ≠ NP. So, let us look at the other direction.
Let SAT be in P. Consider an arbitrary problem X in NP. Then, there is a polynomial
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time reduction from X to SAT. Since SAT is in P, we can solve X also in polynomial
time. Therefore X is in P. Hence all problems in NP are in P.

.
This gives rise to two possibilities for NP problems as shown in Figure 2.2.

Figure 2.2 Figure 1. assumes P ≠ NP. Figure 2. assumes P = NP.

Finally we will look at the hardest co-NP hard problems.

De�nition 2.9 (co-NP hard and co-NP complete) A problem X is co-NP hard, if

there are polynomial time reductions from all co-NP problems to X . A problem X is

co-NP complete if X satis�es both the below conditions.

1. X is in co-NP.

2. X is co-NP hard.

The following claim follows easily whose proof we leave it to the reader.

Claim 2.15 A problem X is co-NP complete if and only if its complement problem X
is NP complete. Therefore, Validity problem is co-NP complete.

Here is another claim.

Claim 2.16 If an NP problem is co-NP hard, then NP=co-NP.

Proof : Let us assume X is an NP problem which is co-NP hard. We �rst show that
this implies co-NP ⊆ NP. Let Y be an arbitrary problem in co-NP. Since X is co-NP
hard, there is a polynomial time reduction to X from Y . This implies Y is in NP.

Let us now show the other direction NP ⊆ co-NP. Consider an arbitrary Y ∈ NP.
Then Y is in co-NP. From our above claim, Y ∈ NP. Therefore Y is in co-NP.

The �gure 2.3 captures a possible relationship between P, NP and co-NP.

2.3 Summary and Acknowledgements

This chapter uses the same presentation as found in Introduction to Algorithms
[CLRS01].
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Figure 2.3 One possible relationship between P, NP and co-NP

2.4 Chapter exercises

2.1 An alternate de�nition of NP is the set of all problems which can be solved by
a non-deterministic Turing machine running in polynomial time. Using this de�ni-
tion can you prove Cooks’ theorem that SAT is NP-hard. Given a non-deterministic
Turing Machine which runs in poly(n) time (say in time n2) and an input of size n,
construct a w� (of size polynomial in n) such that the formula is satis�able if and
only if the Turing machine accepts the input.

2.2 Show that if we can reduce a problem X to an NP-complete problem, then X
is in NP. Mention the short certi�cate in this case as well as the polynomial time
algorithm.

2.3 For an undirected graph G, we say that a set of vertices I = {v1, v2, … , vk} is
an independent set, if there are no edges between the vertices in I . In other words,
for all vi , vj ∈ I , the edge (vi , vj ) does not exist. The Independent set problem is as
follows.
Input: A graph G and a number k
Output: Yes, if there exists an independent set of cardinality k. No, otherwise.

Show the following

1. (2 marks) The independent set problem is in NP.

2. (4 marks) The independent set problem is NP-hard by reducing from 3-CNF
SAT.
[Hint: For a graph G = (V , E), consider its complement graph G = (V , E).
The vertices in G and G are the same. The edges are di�erent though. For all
vertices vi , vj ∈ V , we have that (vi , vj ) ∈ E if and only if (vi , vj ) ∉ E. In other
words, an edge is in one graph if and only if the corresponding edge is not
present in the other graph.
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The following claim is the hint (which you do not have to prove): A graph G
has an independent set of size k if and only if the complement graph G has a
clique of size k.]

3. (4 marks) Prove that your above reduction is correct.

2.4 Show that 3-colorability is NP-complete.

2.5 Show that k-clique problem is NP-complete.

2.6 The subset-sum problem is de�ned as follows: Given a set S of n positive
integers and a positive integer W , determine whether there is a subset of S whose
elements sum to W . There is an algorithm which solves this problem in O(nW)
time. Answer the following questions.

1. Does an O(nW) time algorithm imply subset-sum problem is in P?

2. Show that the problem is in NP.

3. Now show that the problem is NP-hard by reducing from CNF SAT.

2.7 Write True or False for the following statements.

1. This is possible. NP \P = NP-complete (Here \denotes set substraction).

2. DNF satis�ability can be done in polynomial time.

3. Is (p ⇒ q) ≡ (¬((¬p) ∧ q)) (here ≡ stands for equivalent).

4. This is possible. NP ∩ co-NP = P.

5. If we want to prove that a problem X is NP-Hard, we take a known NP-Hard
problem Y and reduce Y to X .

6. This is possible. NP-complete is a subset of NP-hard.

7. This is possible. NP = co-NP but NP ≠ P.

8. Let X be an NP-complete problem which can be solved in worst case running
time of O(2

√
n). Then all NP problems can be solved in O(2

√
n) time.





CHAPTER 3

SAT SOLVERS

3.1 Introduction

Consider the SAT problem (Problem 2.1). From the discussion in the previous
chapter we know SAT is NP-complete. In this chapter we will look at algorithms to
solve the SAT problem. Naturally, they all run in exponential time in the worst case.
But, they work well in practise. A huge engineering e�ort has gone into making
SAT solvers work in practise. In this chapter we will consider deterministic SAT
solvers. This is in contrast with Randomized SAT solvers. In the later case, the
algorithms use random numbers to reduce the computational speed. The trade o�
is in accuracy. In some situations the algorithm might say the w� is not satis�able
when in fact it can.

The deterministic algorithms we see in this chapter are: Resolution, Seman-
tic/Analytical tableaux and DPLL.
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3.2 Resolution

3.2.1 The algorithm

The Resolution algorithm was proposed by J. Robinson in 1965. The advantage of
this method, will be clear when we do the validity problem for First order logic.
Resolution is a syntactic algorithm for solving SAT. That is, the algorithm will only
do symbolic manipulations. Later we will see DPLL, a semantic algorithm. In that
algorithm, we will assign true or false values to propositions.

Resolution can be applied only on CNF formulas. From the previous chapter, we
know that any w� can be converted to an equisatis�able CNF formula in polynomial
time. Therefore, in principle, Resolution can be used to solve satis�ability of any
w�. A CNF formula � is a conjunction of disjunctions. That is � ∶∶= ⋀i �i where
�i are disjunctions. We will call �ias clauses (in the earlier chapter we called this as
disjunctive clause). We say that a literal l appears in a clause �i if �i ∶∶= (
1 ∨ l ∨ 
2)
where 
1 and 
2 are clauses. Similarly, we say that a clause � appears in a w�
� if � = (� ∧ 
) where 
 is a CNF formula. The resolution algorithm works by
translating one CNF formula into another. While this processing is done, we require
the following simpli�cation to be done on the formula: If � is a clause in � , then
we will assume the formula (� ∧ �) to be also � . In other words, there cannot be
two clauses � in any formula. Clearly this does not a�ect satis�ability. Similarly,
we also assume that if l is a literal in a clause � , then (� ∨ l) will also be considered
as � only.

For a literal l, we write

l =

{
p, if l = (¬p)
(¬p), if l = p

A unit clause is a clause which has only one literal. For example the following
formulas has a unit clause (namely ¬p) but clauses (q ∨ r) and (t ∨ ¬r) are not unit
clauses.

(q ∨ r) ∧ (¬p) ∧ (t ∨ ¬r)

The most important step of the resolution algorithm is the resolution step.

Resolution step: This is the most important step in the algorithm. It says that, if a
w� � has clauses (
 ∨l) and (�∨l), then the following clause (
 ∨�) can be conjuncted
with � without changing its satis�ability. This rule can increase the size of the w�.
In the next section, we will see a family of w�s for which the Resolution algorithm
blows up to exponential size. Note that, if the blow up is only polynomial, we will
be solving SAT in polynomial time (and hence P = NP).

Consider two clauses (
 ∨ l) and (� ∨ l)where l is a literal and 
 and � are clauses.
We now de�ne the operator Resolve on these clauses as follows.

Resolvel (
 ∨ l, � ∨ l) = 
 ∨ �
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(
 ∨ l) (¬l ∨ �)
Resolution on l

(
 ∧ �) l (¬l ∨ �)
Resolution on l

�

l ¬l Resolution on lF

Figure 3.1 Resolution step: The three ways resolution can occur.

This operation can also be applied when one of the clauses is a unit clause. That is

Resolvel (
 ∨ l, l) = 


Finally, we discuss the operation on two unit clauses. Consider the unit clauses p
and (¬p). Since the formula which contains both these unit clauses is not satis�able,
we will de�ne the resolution rule applied on these clauses to be F. That is,

Resolvel (l, l) ∶∶= F

See Figure 3.1 for the resolution step in pictorial form.
Note that a formula containing both l and l as clauses is not satis�able. The

resolution rule can states that the Resolve operator can be applied to any CNF
formula without changing the satis�ability. The proof of the claim is left to the
reader.

Claim 3.1 (Resolution Rule) Let � be a CNF formula and l a literal. Let 
 and �
be two clauses in � such that l is in 
 and l is in � . Then,

� is satis�able i� (� ∧ Resolve(
 , �)) is satis�able.

Let us look at an example of applying the resolution rule.

EXAMPLE3.1

Let � ∶∶= ((p ∨ q ∨ ¬r) ∧ (p ∨ t ∨ r)). We see that r is a literal which appears
as ¬r in �rst clause and r in second clause. Hence we can apply the resolution
rule in these clauses to get the formula

((p ∨ q ∨ ¬r) ∧ (p ∨ t ∨ r) ∧ (p ∨ q ∨ t))

The algorithm which implements resolution rule can be stated as follows.

The resolution algorithm (Algorithm 4) can now be stated as follows. Keep on
applying the resolution rule until you cannot go further. During this process, if
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Algorithm 3 Resolution rule on a proposition
Input A CNF formula �
Output: CNF formula with one less proposition than �

1: function ResolutionRule(�)
2: Select a proposition p in � .
3: repeat

4: �′ = � .
5: Select two clauses 
 and � containing p and ¬p respectively.
6: � = (� ∧ Resolvep(
 , �))
7: until �′ = �
8: return � .
9: end function

you ever see a F in the formula, then it means the input formula is not satis�able.
If we never see F, then we can say that the formula is satis�able. We say that the
resolution algorithm is sound and complete . Soundness means that, whenever the
resolution algorithm returns no, the formula is not satis�able. Complete means
that, whenever the formula is not satis�able, the algorithm returns no.

Theorem 3.2 (sound and complete) The resolution algorithm (Algorithm 4) is cor-

rect. That is, the algorithm returns no if and only if the input formula is not satis�able.

In other words, for all formula �

F is a clause in  (CNF formulas , �, {ResolutionRule}) i� � is not satis�able

Proof : (soundness:) Let us now assume the algorithm returns no after n iterations
of the while loop. Let us denote by �i , the � at the beginning of the itℎ iteration of
the loop. Therefore �1 = � and F is in �n . The � ’s at each iteration is denoted as

� = �1, �2, … , �n

From claim 3.1, we have that for each i < n, �i−1 is satis�able if and only if �i is
satis�able. We �rst claim that �n is not satis�able. This follows from the fact that
on reaching �n , the algorithm outputs no. This can happen only if F is a clause in
�n . Since �n is not satis�able, by an inductive argument using Claim 3.1 it follows
that � = �1 is not satis�able.

(completeness:)

3.2.2 Extended Resolution algorithm

The algorithm consists of two parts. As stated earlier, we modify the w� as we go
along the algorithm.

Preprocessing step: In this step, we give some simple transformations of an in-
put w�. The preprocessing step reduces the size of the formula. It also runs in
polynomial time in the size of the input.
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Algorithm 4 Resolution
Input A CNF formula �
Output: yes if � is satis�able, no otherwise.

1: function Resolution(�)
2: repeat

3: if (F is in �) then return no
4: �′ = � .
5: � = ResolutionRule(�).
6: until �′ = �
7: return yes.
8: end function

The following claim says that if � contains a unit clause l (but not ¬l) then we
can get an equisatis�able formula �′ of smaller size. During these steps, we might
reach a situation where all the clauses in � will be removed by the algorithm. If this
happens, we show that � is satis�able.

Claim 3.3 (unit clause elimination) Let � be a w� such that it does not satisfy

unit clause contradiction but it contains a unit clause l. Let �′ got by removing from

�

1. all clauses which contains l and

2. all literals (l) from all clauses.

Then, � is satis�able if and only if (�′ is satis�able or �′ is empty).

The reader can try to prove the above claim. We say that l is a pure literal in w�
� if l does not appear in � . In the following formula, q, ¬p and t are pure literals
whereas r or ¬r are not.

(q ∨ r) ∧ (¬p) ∧ (t ∨ ¬r)

The next claim says that pure literals can be removed without a�ecting satis�ability.

Claim 3.4 (pure literal elimination) Let l be a pure literal in a w� � . Let �′ be
the w� got by removing all clauses which contain l from � .

Then, � is satis�able if and only if (�′ is satis�able or �′ is empty).

We leave the proof of the above claim as well as the one below to the reader.

Claim 3.5 (tautology elimination) Let � contain a clause which has both literals

l and l. Let �′ be the formula got by removing the clause from � .
Then, � is satis�able if and only if (�′ is satis�able or �′ is empty).

We now state the extended Resolution algorithm.

We are now in a position to show that the Algorithm 5 is correct.
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Figure 3.2 The rules of resolution algorithm

Algorithm 5 Resolution extended
Input A CNF formula �
Output: yes if � is satis�able, no otherwise.

1: function ResolutionX(�)
2: repeat

3: if (F is in �) then return no
4: � = PureLiteralElimination(�)
5: � = UnitClauseElimination(�)
6: � = ResolutionRule(�)
7: � = TautologyElimination(�)
8: if (� is empty) then return yes
9: until true

10: return yes.
11: end function

Lemma 3.6 (Soundness) Let � be an arbitrary w�. If Resolution(�) = No, then � is

not satis�able.

Proof : Let us now assume the algorithm returns No after n iterations of the while
loop. Let us denote by �i , the � at the beginning of the itℎ iteration of the loop.
Therefore �1 = � and �n = No. The � ’s at each iteration is denoted as

� = �1, �2, … , �n = No

From the induction statement we have that for each i < n, �i−1 is satis�able if and
only if �i is satis�able. We �rst claim that �n−1 is not satis�able. This follows from
claim ?? and the fact that, UnitClauseContradiction(�n−1) = No. Since �n−1 is not
satis�able, by an inductive argument using Claim 3.1 it follows that � = �1 is not
satis�able.
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The next lemmas shows the other side.

Lemma 3.7 (Completeness) Let � be an arbitrary w�. If Resolution(�) = Yes, then

� is satis�able.

Proof : We follow the same proof as the one in Lemma 3.6.
Let us now assume the algorithm returns Yes after n iterations of the while loop.

Let us denote by �i , the � at the beginning of the itℎ iteration of the loop. Therefore
�1 = � and �n = Yes. The � ’s at each iteration is denoted as

� = �1, �2, … , �n = Yes

From the induction statement we have that for each i < n, �i−1 is satis�able if and
only if �i is satis�able. We �rst claim that �n−1 is satis�able. This follows from
claims 3.4, 3.5 and 3.1. Since �n−1 is satis�able, by an inductive argument using
Claim ?? it follows that � = �1 is satis�able.

Lemma 3.8 (Termination) The Resolution algorithm terminates.

Proof : We prove by induction on the number of propositions: For all w�s � , we
have � ≠ oneStepProcess(�).

Consider the base case of one proposition p1: Then � can either be p1, or (p1∨¬p1)
or (p1 ∧ ¬p1) or ¬p1. The claim holds in all these cases.

Now let us prove the inductive step. Let us assume that the claim is true for
all w�s which has atleast n − 1 number of propositions. Consider a w� � with
propositions p1, p2, … , pn . We prove this inductive step by contradiction. Let � =
oneStepProcess(�). Observe that � does not satisfy unit clause contradiction. It
also does not contain pure literals, unit clauses or a tautology clause. Therefore for
every proposition pi , there is a clause which contains pi and a clause which contains
¬pi (and both cannot come in the same clause). We can therefore write � as follows

Finally, we also have that � is closed under Resolution rule. Note that � is a
w� which has only n − 1 propositions. Therefore by induction hypothesis, � ≠
oneStepProcess(�). In other words, � satis�es atleast one of the following condi-
tions

1. Unit clause contradiction: Then � also should satisfy this condition.
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2. Contain a pure literal: If � has a pure literal, then � also has a pure literal.

3. Contains a unit clause or tautology: Clearly this would imply � also has a unit
clause or a tautology.

4. � is not closed under Resolution rule: Again, this would imply � also doesnt
satisfying the Resolution rule.

All the above cases lead to a contradiction. Hence our initial assumption is false
and therefore � ≠ oneStepProcess(�).

The second part of our proof is to show by induction on the number of proposi-
tions that: For all w�s � , the algorithm terminates. The base case is easy to see. So
consider an � which has propositions p1, … , pn . We know by induction hypothesis
that the algorithm terminates for all w�s � which contains n−1 propositions. From
our claim above, we know that every call to the oneStepProcess subroutine changes
the formula. Let

� = �1, �2, …

be an in�nite run of the algorithm where for all i ≥ 1, �i ≠ �i+1. We now give a
contradiction. There are two cases to consider.

1. Let us assume that there exists an i such that for all j ≥ i, we have that �j
contains less than or equal to n − 1 propositions (this could have happened
because of the some literal elimination). By induction hypothesis, this means
that the algorithm terminates. Therefore, there cannot be an in�nite run.

2. Assume that for all j, we have �j contains n propositions. That means, no literal
was eliminated during the entire run of the algorithm. Hence only tautology
elimination and the resolution rule was applied throughout. Now note that
there are only 2n clauses possible (after elimination tautology w�s). Since,
the resolution step only increases the clauses and not decrease, the algorithm
cannot run for more than 2n steps. Again, we have that, there cannot be an
in�nite run.

Both the above two cases show that the algorithm runs only for a �nite number of
steps. Hence Algorithm 4 terminates.

We can now use the above arguments to show that the our algorithm is correct.

Theorem 3.9 The Resolution algorithm (Algorithm 4) is correct.

Proof : Lemma 3.8 shows that the algorithm terminates for all inputs. It now fol-
lows from Lemma 3.6 and Lemma 3.7 that the algorithm returns Yes if and only if
the input formula is satis�able.

3.2.3 Worst case running time

Todo: We show that pigeonhole principle will take worst case exponential running
time.
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3.2.4 Polynomial time: 2CNF SAT

See Exercise ?? for a polynomial time algorithm for 2CNF SAT.

3.2.5 Polynomial time: HornClause SAT

Horn clause formulas are special formulas for which we can check satis�ability in
polynomial time. They are used in knowledge representation.

De�nition 3.1 (Horn clause) A formula is a Horn clause formula if it can be gen-

erated by the following grammar.

 ∶∶= T | F | p {where p is a proposition}
� ∶∶=  | ( ∧ �)
� ∶∶= (� ⇒ ) | (� ∧ �)

Here is an example of a Horn clause formula.

(T ⇒ p) ∧ ((p ∧ q) ⇒ r) ∧ (F ⇒ q) ∧ (p ⇒ F)

Here are some examples of formulas which are not Horn clause formulas.

1. p ⇒ (q ∧ r) : Implications cannot have conjunctions on the right side.

2. ¬p ⇒ q : Negations are not allowed

3. p ⇒ (q ⇒ r) : Implications cannot be nested.

Here is an alternate de�nition of Horn Clause formulas.

De�nition 3.2 (Horn clause) A CNF formula � is called a Horn clause formula if

the clauses in � contains at most one positive literal.

Let us look at the example given above and express it in equivalent CNF form.

p ∧ (¬p ∨ ¬q ∨ r) ∧ (¬p)

We next show that the two statements are equivalent.

Lemma 3.10 Let � be a w�. There is a Horn clause formula � according to de�ni-

tion 3.1 which is equivalent to � if and only if there is a Horn clause CNF formula 

according to de�nition 3.2 which is equivalent to �

Proof : We leave the proof for the reader.

The polynomial time algorithm for checking satis�ability of Horn-clause formu-
las is given in Algorithm 6.

The correctness of the algorithm follows from the two lemmas below.

Lemma 3.11 If the Horn-clause-SAT algorithm outputs no, then the formula is not

satis�able.



48 SAT SOLVERS

Algorithm 6 Horn Clause Satis�ability
Input A Horn clause formula �
Output: no if � is unsatis�able, otherwise a satisfying assignment

1: function HornClauseSAT(�)
2: Mark proposition p if (T ⇒ p) is a clause in � .
3: while (there exists a clause (p1 ∧p2 ∧⋯∧pk ) ⇒ pk+1 such that pi is marked

for all i ≤ k but pk+1 is not) do
4: Mark pk+1
5: if (there exists a F which is marked) then return no
6: end while

7: return assignment which maps all marked propositions to T and rest to F
8: end function

Proof : We �rst show the following loop invariant.
Let v be a satisfying assignment of � . Then, the marked propositions will be

assigned true in v.

The loop invariant holds before we enter the while loop in line (2), since only T is
marked. So, let us assume that the loop invariant is true before it enters the while
loop. We show that, the loop invariant holds after a run of the while loop. Consider
that the while loop marks a proposition pk+1 because all propositions p1, … , pk was
marked and � contains the clause (p1 ∧ p2 ∧ ⋯ ∧ pk ) ⇒ pk+1. Let v be an arbitrary
assignment which makes � true. We know from the loop invariant that v assigns
true to all propositions p1, … , pk . Since v also satis�es the clause (p1∧p2∧⋯∧pk ) ⇒
pk+1 (note that � is a conjunction of such clauses), v should necessarily assign pk+1
to true. Therefore, the loop invariant remains to hold once we exit the while loop
also.

We can now prove the lemma. Let us assume that the algorithm outputs No.
Therefore, F was marked. Our loop invariant says that all valuations which satis�es
� should necessarily be such that it assigns true to F. This is not possible and hence
the formula is not satis�able.

Lemma 3.12 If the Horn-Clause-SAT algorithm outputs yes, then the formula is sat-

is�able.

Proof : Let � be the formula given as input to the algorithm. We �rst prove the
following claim.

If pk+1 is not marked and there is a clause p1 ∧ p2 ∧ ⋯ ∧ pk ⇒ pk+1 in � , then
atleast one of p1, … , pk is not marked.

Assume the above claim is false. Then all the propositions p1, … , pk are marked.
But then step 2 of the algorithm will mark pk+1 also. This is a contradiction. Hence
atleast one of p1, … , pk is not marked.

We use the above claim to prove the lemma. There can be two types of clauses,
(1) either a clause has all propositions marked or (2) it has atleast one proposition
not marked. So consider the latter case. A clause with atleast one proposition not
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marked. From our above claim, it follows that atleast one proposition in the left
hand side of the implication is not marked. The algorithm ensures this clause is
satis�ed, since all propositions not marked are assigned false. Now, consider the
former case. A clause whose all propositions are marked. The algorithm assigns
all propositions to true and hence the clause is satis�ed. Therefore the clause is
satis�ed by the valuation given by the algorithm.

3.3 Analytical/Semantic Tableaux

3.4 DPLL algorithm

The algorithm takes a CNF formula and a partial assignment to the propositions
as input. Initially it is called with an empty assignment. The algorithm recursively
picks a proposition to be assigned a true or false value and extends the partial as-
signment. At any instance if the constructed assignment satis�es the formula, the
algorithm immediately returns yes. On the other hand, if an assignment does not
satisfy a formula, we change the assignment to a proposition.

The simplest DPLL algorithm is given in Algorithm 7.

Algorithm 7 DPLL for CNF Satis�ability
Input A CNF formula � and a partial assignment v to the propositions
Output: yes if � is satis�able, no otherwise.

1: function DPLL(� ,v)
2: if (v assigns values to all the propositions) then
3: if (v satis�es �) then return yes
4: else return no
5: end if

6: Let p = a proposition which is not assigned a value by v
7: if (DPLL(� ,v ∪ {p = T}) = yes) then return yes
8: return DPLL(� ,v ∪ {p = F})
9: end function

Let us see the working of the algorithm using an example.

EXAMPLE3.2

The tree in Figure 3.3 depicts the run of the algorithm for the CNF formula:

((p ∨ q ∨ r) ∧ (¬p ∨ ¬q) ∧ (¬q ∨ r) ∧ (p ∨ ¬r))

In the �gure, each node represents a partial valuation.
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Figure 3.3 The run of DPLL algorithm for the formula ((p∨q∨r)∧(¬p∨¬q)∧(¬q∨r)∧(p∨¬r)).
A node represents the partial valuation at that point. The returns paths are labelled by yes or
no.

The algorithm can be extended by the preprocessing step we saw for Resolution.
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Algorithm 8 Extended DPLL
Input A CNF formula � and a partial assignment v to the propositions
Output: yes if � is satis�able, no otherwise.

1: function DPLLExtended(� ,v)
2: if (v assigns values to all the propositions) then
3: if (v satis�es �) then return yes
4: else return no
5: end if

6: � =Preprocessing(�)
7: Let p = a proposition which is not assigned a value by v
8: if (DPLLExtended(� ,v ∪ {p = T}) = yes) then return yes
9: return DPLLExtended(� ,v ∪ {p = F})

10: end function

11: function Preprocessing(�)
12: repeat

13: �′ = � .
14: � =PureLiteralElimination(�).
15: � = UnitClauseRemoval(�).
16: � = TautologyElimination(�).
17: until � = �′
18: end function

3.5 Summary and Acknowledgements

We followed the resolution algorithm from Ben-Ari [BA12] and Uwe Schöning
[Sch89]. The DPLL algorithm follows the presentation in Russell and Norvig [RN95].

3.6 Chapter exercises

3.1 Let us assume you have the following programs.

1. Horn-SAT: The program on input a formula � outputs Yes if � is a satis�able
Horn clause formula. Otherwise it outputs No.

2. 2CNF-SAT: The program on input a formula � outputs Yes if � is a satis�able
2CNF formula. Otherwise it outputs No.

Use these programs to check whether the following formulas are satis�able or not.

(a) Let � be a conjunction of clauses (disjunction of literals) with at most one literal
negated in a clause.

(b) � is generated by the following grammar. G is the start symbol and pis are
propositions.
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P ∶= p1 | p2 | … | pn | ¬p1 | ¬p2 | … | ¬pn
C ∶= P ∧ C | P
G ∶= C | (P ⇒ G)

3.2 Consider the following w�.

(p∧(p → ((q∨r)∧¬(q∧r)))∧(p → ((s∨t)∧¬(s∧t)))∧(s → q)∧((¬r) → t)∧(t → s))

Answer the following questions.

1. Give a CNF formula equivalent to the above formula (Let us call this CNF for-
mula �).

2. List the clauses in � and identify the unit clauses.

3. Give a DNF formula equivalent to the complement of � .

4. Run the resolution algorithm to check if � is satis�able or not. Mention each
rule you apply and the translation which happens to the formula.

3.3 Consider the following algorithm for checking HornClauseSAT. Prove the
soundness and completeness of the algorithm.

Algorithm 9 Horn Clause Satis�ability
Input A Horn clause formula �
Output: no if � is unsatis�able, otherwise yes

1: function HornClauseCNFSAT(�)
2: repeat

3: �′ = �
4: � =UnitClauseElimination(�)
5: if (p and (¬p) are clauses in �) then return no
6: until (�′ = �) return yes
7: end function

3.4 The following questions are about the relationship between P, NP and co-NP.
We only know that P is a subset of both NP and co-NP. Consider the following
situations. For each of them, check whether these situations will lead to new rela-
tionships between P, NP and co-NP. You also need to explain why?

1. Assume Algorithm 4. runs in polynomial number of steps for both yes and no
instances.

2. Assume whenever Algorithm 4. returned no, the while loop executed polyno-
mial number of steps.

3. Assume, there is a choice of clauses for resolution such that whenever algo-
rithm returned no, the while loop executed only polynomial number of steps.



EXERCISES 53

3.5 Answer the following questions based on 2-CNF formulas and the Resolution
algorithm (Algorithm 4).

1. Let � be a CNF formula which contains n propositions and m clauses. We give
� as input to Algorithm 4. Each time, the while loop is executed, the formula
� changes. How many clauses can � have in the worst case? Why?

2. What is a 2-CNF formula?

3. Let � be a 2-CNF formula containing n propositions and m clauses. We give
this � as input to Algorithm 4. How many clauses can � have in the worst
case? Why?

4. Argue that Algorithm 4 runs in polynomial time for a 2-CNF formula. You can
assume that the algorithm runs correctly for your argument.

5. The algorithm does not run in polynomial time for a 3-CNF formula. What
goes wrong in this case?





CHAPTER 4

PROOF SYSTEM

Mathematical proofs typically use a set of premises along with some rules to derive
a theorem. In this chapter we will look at a set of rules (called natural deduction )
to derive a theorem from a set of axioms. For a set of w�s Γ (called premises) and a
w� � , we will denote by

Γ ⊢ �

if using the rules in natural deduction and starting from the premises Γ we can
derive the w� � . There are two important properties the natural deduction set of
rules satisfy.

Theorem 4.1 (Soundness) If Γ ⊢ � , then Γ ⊨ � .

The soundness theorem shows that statements we can prove, are all true state-
ments assuming the premises are true. In other words, using the natural deduction
proof rules, we cannot derive false theorems. Every proof system expects this prop-
erty. A proof system without soundness does not make much sense.

Natural deduction also satisfy the following interesting property.

Theorem 4.2 (Completness) If Γ ⊨ � , then Γ ⊢ � .
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The completeness theorem says that, all true statements in the axiom system can be
proved using the natural deduction proof rules. Mathematicians are interested in
completeness. It assures them that all true theorems can be proved and therefore it
is worthwhile to search for proofs. Do we have completeness for every logic? Gödel
showed that there is a logic which is not complete (infact the logic is embedded in
set theory, making set theory not complete). That means there are true statements
in the logic which cannot be proved.

If we want to say � ⊢ � and � ⊢ � then we use the notation � ⊣⊢ � .

4.1 Natural Deduction

We will now develop the rules to derive theorems from a set of axioms. Keep in
mind that a proof is a sequence of formulas each of them generated by applying
some rule on the previously generated formulas. Therefore, we need to identify
rules by which we can introduce the logical symbols {¬, ∨, ∧,⇒}. We also need to
identify rules by which each of these symbols can be eliminated. We will now list
all the rules of natural deduction.

(axiom rule) If � ∈ Γ, then Γ ⊢ �. The rules says that if � is a premise then it can
be proved from the w�s in Γ.

(and-introduction rule) If Γ ⊢ � and Γ ⊢ �, then Γ ⊢ (� ∧�). Let us assume that we
already have a proof of � and a proof of � from the premises Γ. The and-introduction
rule can now be applied to get a proof of (� ∧ �). That is, Γ ⊢ � ∧ �

As you would expect the rule holds for any set of premises. The following pic-
torial representation, therefore avoids the premises to represent this rule.

� �
∧i

� ∧ �

Figure 4.1 And-Introduction (∧i)

On the top of the separating line we have � and � , the two formulas for which
we already have a proof. The formula below the line is a consequent of the formulas
mentioned above and applying the and-introduction rule. The rule is mentioned on
the right side of the line. This pictorial representation will be used for mentioning
other rules too.

Here is an example of using this rule:

EXAMPLE4.1

Below we show that {A ⊆ B, A ⊆ C} ⊢ (A ⊆ B ∧ A ⊆ C).
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1. A ⊆ B premise

2. A ⊆ C premise

3. (A ⊆ B ∧ A ⊆ C) ∧i, 1,2

Figure 4.2 and introduction

(and-elimination rule) If Γ ⊢ (� ∧ �), then Γ ⊢ � and Γ ⊢ �. This rule says the
following. Let us assume we have a proof of (� ∧ �). What else can we infer from
this? Isnt it true that if (� ∧�) is true, then individually both of them have to be true
too. This is what the and-elimination rule says. If we can prove � ∧ � , then we can
prove � (and similarly �).

� ∧ �
∧e1� � ∧ �

∧e2
�

Figure 4.3 and-elimination rules

The and-elimination has two rules. One to prove the left hand side of the con-
junction. The other to derive the right hand side. Why do we require two rules? Isnt
only the left rule enough? Note that the natural deduction rules does not assume
any property of conjunction. In other words, it is not assumed that conjunction is
a commutative operation. In fact commutativity is something we can prove using
the rules we have seen till now. Let us consider an example

EXAMPLE4.2

Below we show that {(A ⊆ B ∧ A ⊆ C)} ⊢ (A ⊆ B).

1. (A ⊆ B ∧ A ⊆ C) premise

2. A ⊆ B ∧e1 1

Figure 4.4 and elimination

The following example combines both and elimination and introduction.
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EXAMPLE4.3

We show that {(A ⊆ B ∧ A ⊆ C), A ⊆ D} ⊢ (A ⊆ B ∧ A ⊆ D).

1. (A ⊆ B ∧ A ⊆ C) premise

2. A ⊆ D premise

3. A ⊆ B ∧e1 1

4. (A ⊆ B ∧ A ⊆ D) ∧i 3,2

Figure 4.5 Proof of {(A ⊆ B ∧ A ⊆ C), A ⊆ D} ⊢ (A ⊆ B ∧ A ⊆ D)

(double-negation elimination) If Γ ⊢ ¬¬� , then Γ ⊢ � . Consider the following
statement

“It is not true that it is not raining."

The above statement uses two negations to say, “It is raining". This rule says that
such double negations can be eliminated.

¬¬� ¬¬e�

Figure 4.6 Double negation elimination (¬¬e)

(double-negation introduction) If Γ ⊢ � , then Γ ⊢ ¬¬� . The double negation can
be introduced by the following rule

� ¬¬i¬¬�

Figure 4.7 Double negation introduction (¬¬i)

Let us look at an example.

EXAMPLE4.4

We show that {¬¬(A ⊆ B ∧ A ⊆ C), A ⊆ D} ⊢ ¬¬(A ⊆ D) ∧ (A ⊆ C).
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1. ¬¬(A ⊆ B ∧ A ⊆ C) premise

2. A ⊆ D premise

3. (A ⊆ B ∧ A ⊆ C) ¬¬e 1

4. A ⊆ C ∧e2 3

5. ¬¬(A ⊆ D) ¬i 2

6. ¬¬(A ⊆ D) ∧ (A ⊆ C) ∧i 5,4

Figure 4.8 Proof of {¬¬(A ⊆ B ∧ A ⊆ C), A ⊆ D} ⊢ ¬¬(A ⊆ D) ∧ (A ⊆ C)

(implication elimination) If Γ ⊢ � and Γ ⊢ (� ⇒ �), then Γ ⊢ �. Implication
elimination is something which is very natural. The high school mathematics has
lots of proofs with implication elimination without explicitly mentioning it. This
rule is also called as modus ponens . It says that, if we have a proof for (� ⇒ �) and
we have a proof for � , then � can also be proved. Note that, if formulas (� ⇒ �) is
true and � is true, then � is true necessarily (see truth table for implication). The
rule for eliminating implication is given below.

� � ⇒ �
⇒ e

�

Figure 4.9 Implication-elimination (⇒ e)

EXAMPLE4.5

The following argument makes use of implication elimination: If there is �re,
there is smoke. There is �re. Therefore there is smoke.

1. If there is �re, there is smoke. premise

2. There is �re. premise

3. Therefore, there is smoke. ⇒ e 2,1

Figure 4.10 Proof using implication elimination.
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(implication introduction) If Γ ∪ {�} ⊢ �, then Γ ⊢ (� ⇒ �). This rule is di�erent
from the kind of rules we have seen till now. It says that, if we assume � and are
able to derive � , then we should be able to prove (� ⇒ �). It will require some
time to convince yourself that this rule is not “nonsense". We denote this using our
pictorial representation as follows.

�...
�

⇒ i
� ⇒ �

Figure 4.11 Implication-introduction (⇒ i)

The following example will use both implication introduction and elimination.

EXAMPLE4.6

1. (A ⊆ B ∧ B ⊆ C) ⇒ (A ⊆ C) premise

2. A ⊆ B assumption

3. B ⊆ C assumption

4. (A ⊆ B ∧ B ⊆ C) ∧i 2,3

5. A ⊆ C ⇒ e 4,1

6. ((B ⊆ C) ⇒ (A ⊆ C)) ⇒ i 3-5

7. (A ⊆ B) ⇒ ((B ⊆ C) ⇒ (A ⊆ C)) ⇒ i 2-6

Figure 4.12 Proof of (� ∧ �) ⇒ 
 ⊢ � ⇒ (� ⇒ 
)

Here is another example. For any formula � and any set of premises Γ, we can prove
Γ ⊢ (� ⇒ �).
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1. � assume

2. � ⇒ � ⇒ i 1-1

Figure 4.13 Proof of {T} ⊢ (� ⇒ �), for any wff � .

(disjunction introduction) If Γ ⊢ � , then Γ ⊢ (� ∨ �) for any wff �. Let us assume
that we have a proof of � . Then clearly we have a proof of (� ∨�), no matter what �
is. This is because if � is true, (� ∨�) is true for all � . The following rules introduces
this disjunction symbol. Note that, since we do not know about the commutativity
of disjunction we need a second rule too: If Γ ⊢ � , then Γ ⊢ (� ∨ �) for any w� � .

� ∨i1
� ∨ � �

∨i2
� ∨ �

Figure 4.14 disjunction introduction

Here is a simple example of disjunction introduction.

1. A ⊆ B premise

2. (A ⊆ B) ∨ (A ⊆ C) ∨i1 1

Figure 4.15 An example of disjunction introduction

(disjunction elimination) If Γ ∪ {�} ⊢ 
 , Γ ∪ {�} ⊢ 
 and Γ ⊢ (� ∨ �), then Γ ⊢ 
 .
Let us assume we have a proof of � ∨ � . Moreover we have a proof of 
 assuming
� is a premise. Similarly we have a proof of 
 assuming � is a premise. We can
therefore infer that 
 should be provable from the original set of premises. This is
what disjunction elimination helps us achieve.

Figure 4.16 Disjunction-elimination (∨e)
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Let us look at an example.

EXAMPLE4.7

In this example we show that {(A ⊆ B ∨ A ⊆ C), B ⊆ D, (A ⊆ B ∧ B ⊆ D) ⇒ A ⊆
D} ⊢ (A ⊆ D ∨ A ⊆ C) using disjunction elimination.

1. (A ⊆ B ∨ A ⊆ C) premise

2. B ⊆ D premise

3. (A ⊆ B ∧ B ⊆ D) ⇒ A ⊆ D premise

4. A ⊆ B assumption

5. (A ⊆ B ∧ B ⊆ D) ∧i 4,2

6. A ⊆ D ⇒ e 5,3

7. (A ⊆ D ∨ A ⊆ C) ∨i1 6

8. A ⊆ C assumption

9. (A ⊆ D ∨ A ⊆ C) ∨i2 8

10. (A ⊆ D ∨ A ⊆ C) ∨e 1, 4-7, 8-9

Figure 4.17 Proof of {�1 ∨ �2, �, (�1 ∧ �) ⇒ 
} ⊢ 
 ∨ �2

(contradiction introduction) If Γ ⊢ � and Γ ⊢ ¬� , then Γ ⊢ F. Let us assume we
are able to prove � and also prove ¬� . Clearly there is a contradiction.

� ¬� FiF

Figure 4.18 Contradiction introduction (Fi)

(proof by contradiction) If Γ ∪ {�} ⊢ F, then Γ ⊢ ¬� . We are used to proof by
contradiction. This proof strategy assumes that a certain property is true and use
that to prove a contradiction. Therefore, we can assume that our assumption was
wrong.
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�...
F Fe¬�

Figure 4.19 Proof by contradiction (Fe)

EXAMPLE4.8

The following argument makes use of proof by contradiction: If there is �re,
there is smoke. There is no smoke. Therefore, there is no �re.

1. If there is �re, there is smoke. premise

2. There is no smoke. premise

3. There is �re. assumption

4. Therefore, there is smoke. ⇒ e 3,1

5. A contradiction. Fi 2,4

6. Therefore, there is no �re. Fe 3-5

Figure 4.20 Natural deduction proof of modus tollens.

The above example, is also called modus tollens . As we have observed, modus
tollens can be derived by the other rules.

¬� � ⇒ �
modus tollens¬�

Figure 4.21 Modus tollens rule - This is a derived rule.

We have now seen all the rules of natural deduction. See Figure 4.22. We can
now look at examples. First we will look at some derived rules, like the above modus
tollens rule.

The next derivation is similar to the proof by contradiction (except for the sign
in �). If Γ ∪ {¬�} ⊢ F, then Γ ⊢ � . See Figure 4.23.
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Introduction Elimination

Figure 4.22 The rules of Natural Deduction

¬�...
F ¬e�

Figure 4.23 Negation elimination

The above rule can be derived by the following natural deduction proof.

1. ¬� assumption

2. …

3. F following the proof of Γ ∪ {¬�} ⊢ F

4. ¬¬� Fe 1-3

5. � ¬¬e 4

Figure 4.24 Natural deduction for negation elimination.
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The next derivation says that: from a contradiction we can derive any formula.

F
�

Figure 4.25 “Contradiction implies anything"

Here is a proof of the above claim.

1. ¬� assumption

2. F premise

3. � ¬e 1-2

Figure 4.26 Natural deduction proof of “contradiction implies anything".

We now see one very important rule called “law of excluded middle (LEM)". It
says that, for any w� � , we have {T} ⊢ (� ∨ ¬�).

LEM
(� ∨ ¬�)

Figure 4.27 “Law of exclude middle (LEM)"

1. ¬(� ∨ ¬�) assumption

2. � assumption

3. (� ∨ ¬�) ∨i1 2

4. F Fi 1,3

5. ¬� Fe 2-4

6. (� ∨ ¬�) ∨i2 5

7. F Fi 1,6

8. (� ∨ ¬�) Fe 1-7

Figure 4.28 Natural deduction proof of “law of excluded middle (LEM)".

Let us now look at some examples of natural deduction. We �rst show that
¬� ⊢ � ⇒ �
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1. ¬� premise

2. � assumption

3. F Fi 2, 1

4. � “false implies anything" 3

5. � ⇒ � ⇒ i 2-4

Figure 4.29 Proof of ¬� ⊢ � ⇒ �

1. ¬� premise

2. � ∧ � assumption

3. � ∧e1 2

4. F Fi 3,1

5. ¬(� ∧ �) Fe 2-4

Figure 4.30 Proof of ¬� ⊢ ¬(� ∧ �)

Finally, we show that � ∨ �, � ∨ ¬� ⊢ � .

1. � ∨ � premise

2. � ∨ ¬� premise

3. ¬� assumption

4. � assumption

5. F ¬e 4,3

6. � Fe 5

7. � assumption

8. � ∨e 1, 4-6, 7

9. � assumption

10. F ¬e 9,3

11. ¬� Fe 10

12. ¬� assumption

13. ¬� ∨e 2, 9-11,12

14. F ¬e 8,13

15. ¬¬� ¬i 3-14

16. � ¬¬e 15

Figure 4.31 Proof of � ∨ �, � ∨ ¬� ⊢ �

Problems
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4.1 Prove the following.

1. (commutative) � ∧ � ⊢ � ∧ � .

4.2 Prove the following.

1. (commutative) � ∨ � ⊢ � ∨ �

2. (associative) � ∨ (� ∨ 
) ⊢ (� ∨ �) ∨ 


3. (distributive) � ∧ (� ∨ 
) ⊣⊢ (� ∧ �) ∨ (� ∧ 
).

4. � ∨ (� ∧ 
) ⊣⊢ (� ∨ �) ∨ (� ∨ 
).

4.3 [modus tollens] Show that � ⇒ �, ¬� ⊢ ¬� .

4.4 [LEM] Show that T ⊢ � ∨ ¬� .

4.1.1 Soundness theorem

The proof of the theorem involves mathematical induction. If you are not used to
induction, go through Chapter ??.

Let us restate the soundness theorem �rst.

Theorem 4.3 (Soundness) If Γ ⊢  , then Γ ⊨  .

The theorem says that, all formulas proved using natural deduction are true in a
world where the axioms are true. The rest of this section will be devoted to proving
the soundness theorem. The proof is by mathematical induction on the length of the
proof. The length of a proof is the number of steps required in a natural deduction
proof. The induction hypothesis is as follows:

“For all set of formulas Γ, if Γ ⊢  where proof length is n, then Γ ⊨  holds."

Base Case (n = 1): The only proof of length 1 is as follows

Γ ⊢ � — Axiom

where � ∈ Γ is an axiom. From the de�nition of ⊨ it follows that Γ ⊨ � .
Inductive step: Let us assume that the induction hypothesis holds for all proofs

of length less than or equal to n. We will show that the claim holds for proofs of
length n+1. Consider one such proof. We will do a case analysis on the rule applied
to derive  in the n + 1th step of the proof.

Case ∧i: The step is and-introduction. That is, we have Γ ⊢  and  is of the
form �∧� for some formulas � and � which were derived earlier in the proof. Hence
we know that Γ ⊢ � and Γ ⊢ � . From induction hypothesis (since the proof lengths
are less than n + 1) it follows Γ ⊨ � and Γ ⊨ � . From the semantics of ∧, we get
Γ ⊨ � ∧ � .
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Case ∧e: That means, Γ ⊢  and  has been derived by applying an and elimi-
nation from a formula of the form  ∧ � or � ∧  . We will assume the former (the
latter will have a symmetric argument). This means, there was a step in the proof
which derived  ∧ � and hence Γ ⊢  ∧ � . Since the proof length of  ∧ � is less
than n + 1, from induction hypothesis we get Γ ⊨  ∧ � . From the semantics of and
(∧) it follows Γ ⊨  .

Case ¬¬i: That is  is of the form ¬¬� for an � which was derived earlier in
the proof. From induction hypothesis and semantics of negation (applied twice), it
follows Γ ⊨  .

Case ¬¬e: We can assume  is got by elimination the double negation from a
formula ¬¬ which was derived earlier in the proof. Again, applying induction
hypothesis and using the semantics of negation, we get that Γ ⊨  .

Case ⇒ i: Let us assume that Γ ⊢  and  is of the form � ⇒ � and the
rule applied was implication-introduction. Therefore, after assuming � , there is a
derivation of � in the proof. In other words, Γ ∪ � ⊢ � . This proof is of length less
than n + 1 and hence Γ ∪ � ⊨ � . From the semantics of implication, it follows that
Γ ⊨ � ⇒ � .

Similarly going through all the other cases will �nish the proof of the soundness
theorem. The reader is asked to try showing this.

Problems

4.1 Show the remaining cases, left out in Theorem 4.3.

4.1.2 Completeness theorem: Huth & Ryan

We say that a formula � is a theorem if � can be proved without assuming any
axioms. That is, T ⊢ � .

In this section we prove the completeness theorem in a weaker setting, where Γ
is a �nite set of formulas. The stronger result will be given later.

Theorem 4.4 (Completeness) Let Γ be a �nite set of formulas. Then, Γ ⊨  implies

Γ ⊢  .

The theorem says that, if our formula is true in a world where the axioms are true,
then the formula can be proved from the axioms. The rest of the section is proving
the theorem. The proof strategy we follow is given in Figure 4.32.

Our �rst step is to reduce the completeness theorem to a simpler case.

Lemma 4.5 If � is a tautology, then � is a theorem. That is, if T ⊨ � , then T ⊢ �

Before we prove the lemma, let us show how it would imply completeness the-
orem. Let us assume that Γ = {�1, … , �n} and �1, �2, … , �n ⊨  . From Exercise 1.3
we know this is equivalent to T ⊨ (�1 ∧ �2 ∧ …�n) ⇒  . Our Lemma 4.5 shows
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1. Reduce completeness theorem to prov-
ing “If � is a tautology then � is a theorem”.

2. For every valuation v, we give a formula �v and a proof �v ⊢ �

3. We combine all the proofs above to show � is a theorem.

Figure 4.32 Proof of Completeness Theorem

that this is equivalent to T ⊢ (�1 ∧ �2 ∧ …�n) ⇒  . From Exercise 4.3 it follows
that �1, �2, … , �n ⊢  . This �nishes the completeness theorem.

Now we can go the proof of Lemma 4.5.

Proof : [Proof of Lemma 4.5] Let P be the set of all propositions in � . For a particular
valuation, v of P , we can de�ne the following formula �v

�v = ⋀
p∈P

v(p)=T

p ∧ ⋀
p∈P
v(p)=F

¬p

That is �v is the conjunction of all propositions which are assigned true in the
valuation along with the neg of all propositions which are assigned false. Let � be
an arbitrary formula. Then the following claim holds for any valuation v because
�v is satis�ed by exactly one valuation, namely v.
Claim 4.6

See exercise 4.9 for the proof of the above claim. We now prove the following for
all subformulas  of � .

If �v ⊨  then �v ⊢  
If �v ⊭  then �v ⊢ ¬ (4.1)

The proof is by structural induction on the parse tree of � . Let us do a case analysis
of the type of node.

Case  ∶= p: Let us �rst consider the case �v ⊨ p. Since p is a conjunct in �v
and-elimination gives us �v ⊢ p. Now if �v ⊭ p, then �v ⊨ ¬p, which implies ¬p is
a conjunct in �v . Therefore, �v ⊢ ¬p.

Case  ∶= 
1 ∧ 
2: Let us �rst consider the case �v ⊨ 
1 ∧ 
2.

Let �v ⊨ 
1 ∧ 
2
⟹ �v ⊨ 
1 and �v ⊨ 
2 (semantics of and)
⟹ �v ⊢ 
1 and �v ⊢ 
2 (induction hypothesis)
⟹ �v ⊢ 
1 ∧ 
2 (and-introduction)
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Now let us prove the other if condition.

Let �v ⊭ (
1 ∧ 
2)
⟹ �v ⊨ ¬(
1 ∧ 
2) (de�nition of semantic entailment)
⟹ �v ⊨ ¬
1 ∨ ¬
2 (Demorgan’s law (proof in Exercise 1.2))
⟹ �v ⊭ 
1 or �v ⊭ 
2 (semantics of or)
⟹ �v ⊢ ¬
1 or �v ⊢ ¬
2 (induction hypothesis)
⟹ �v ⊢ ¬
1 ∨ ¬
2 (or-introduction)
⟹ �v ⊢ ¬(
1 ∧ 
2) (See Exercise 4.1 for this derivation)

We have shown both sides of equation 4.1.
Case  ∶= 
1 ∨ 
2: Let us �rst consider the case �v ⊨ 
1 ∨ 
2. From the semantics

of disjunction, it follows that �v ⊨ 
1 or �v ⊨ 
2. By induction hypothesis, we have
�v ⊢ 
1 or �v ⊢ 
2. From or-introduction, it follows that �v ⊢ 
1 ∨ 
2. Now let us
assume �v ⊭ 
1 ∨
2. From the semantics of disjunction and negation, it follows that
�v ⊨ ¬
1 and �v ⊨ ¬
2. By induction hypothesis, we have �v ⊢ ¬
1 and �v ⊢ ¬
2.
Now exercise 4.1 gives us �v ⊢ ¬(
1 ∨ 
2).

Case  ∶= ¬
 : Let us �rst assume �v ⊨ ¬
 . Therefore �v ⊭ 
 . From induction
hypothesis, therefore it follows that �v ⊢ ¬
 . Now, let us assume �v ⊭ ¬
 . This is
equivalent to �v ⊨ 
 which from induction hypothesis gives us �v ⊢ 
 . Introducing
double negation will give us �v ⊨ ¬¬
 .

Case  ∶= 
1 ⇒ 
2: Let us consider the case �v ⊨ 
1 ⇒ 
2.

Let �v ⊨ 
1 ⇒ 
2
⟹ �v ⊨ ¬
1 ∨ 
2 (see Exercise 1.1)
⟹ �v ⊭ 
1 or �v ⊨ 
2 (semantics of or and negation)
⟹ �v ⊢ ¬
1 or �v ⊢ 
2 (induction hypothesis)
⟹ �v ⊢ ¬
1 ∨ 
2 (or-introduction)
⟹ �v ⊢ 
1 ⇒ 
2 (see Exercise 4.4)

Now let us assume �v ⊭ 
1 ⇒ 
2.

Let �v ⊭ 
1 ⇒ 
2
⟹ �v ⊨ ¬(¬
1 ∨ 
2) (see Exercise 1.1)
⟹ �v ⊨ 
1 and �v ⊭ 
2 (semantics of or and negation, demorgan)
⟹ �v ⊢ 
1 and �v ⊢ ¬
2 (induction hypothesis)
⟹ �v ⊢ 
1 ∧ ¬
2 (and-introduction)
⟹ �v ⊢ ¬(
1 ⇒ 
2) (see Exercise 4.4)

Thus equation 4.1 is true for the implication case.
We have exhausted all the ways in which formulas can be built. Therefore, the

claim in equation 4.1 holds. Let us go back to the lemma and assume its hypothesis,
T ⊨ � . That is, for all valuations v over the propositions, �v ⊨ � . From our
discussion above we have �v ⊢ � . Exercise 4.8 now gives us T ⊢ � .
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4.1.3 Completeness: Alternate proof using Hintikka sets*

In this section we give an alternate proof for completeness. We prove the simpler
version, namely
Lemma 4.5. If T ⊨ � , then T ⊢ �

As seen in the previous section, the above lemma along with the exercises 1.3
and 4.3, will give us the completeness theorem. The rest of the section is for proving
the above lemma.

Natural deduction gives us rules to derive proofs of statements. What is an im-
portant property these rules should satisfy? It should not help us to derive both
a property and its negation. That is, we do not want natural deduction to satisfy
T ⊢ � and T ⊢ ¬� for any formula � . In fact if it does, then using natural deduction
you can prove any formula.

So what we are interested in is a property called consistency . We say that a
formula � is consistent if T ⊬ ¬� . That is, � is consistent if there is no proof for
¬� . Note that, this does not say that there is a proof for � . The following theorem
connects consistent formulas and Lemma 4.5. In fact, it also shows that natural
deduction is consistent.

Claim 4.7 The following statements are equivalent.

1. If T ⊨ � , then T ⊢ �

2. If ¬� is consistent, then ¬� is satis�able.

Proof : (1 ⟹ 2) ∶ Let ¬� be consistent. That is T ⊬ ¬¬� . Therefore T ⊬ �
(otherwise contradiction by double-negation introduction). From (1)we get T ⊭ �
and hence ¬� is satis�able.
(2 ⟹ 1) ∶ Let T ⊨ � . Therefore ¬� is not satis�able. From (2) we get ¬� is not
consistent. In other words T ⊢ ¬¬� . The claim now follows from double-negation
elimination.

We will now prove that “If � is consistent, then � is satis�able". For a �nite set X
of formulas, we say X is consistent if the formula ⋀�∈X � is consistent. Given a
consistent set X , we can extend the sets in a meaningful way as follows. Let us
order all propositional logic formulas into a sequence

�0, �1, …

We de�ne X0 = X and for all i ≥ 0 we de�ne Xi+1 as follows.

Xi+1 =

{
Xi , if Xi ∪ �i is not consistent
Xi ∪ �i , otherwise

We now de�ne the maximal consistent extension ofX , (denoted by X̂ ) as ⋃i≥0 Xi .
This maximal consistent set satisfy some interesting properties.

Lemma 4.8 Let X̂ be as de�ned above. Then
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1. For all i ≥ 0, �i ∈ X̂ i� ¬�i ∉ X̂ .

2. For all i, j ≥ 0, �i ∧ �j ∈ X̂ i� �i ∈ X̂ and �j ∈ X̂ .

3. For all i, j ≥ 0, �i ∨ �j ∈ X̂ i� �i ∈ X̂ or �j ∈ X̂ .

4. For all i, j ≥ 0, �i ⇒ �j ∈ X̂ i� �i ∉ X̂ or �j ∈ X̂ .

Proof : We will prove each of the above claims.

1. Let �j = ¬�i and k = max{i, j}. We show that �i ∈ Xk i� �j ∉ Xk . Let
� = ⋀k

i=0 �i . Let us �rst assume that both �i and ¬�i are not in Xk . Then, � ∧�i
and � ∧ ¬�i are not consistent. Therefore T ⊢ ¬(� ∧ �i) and T ⊢ ¬(� ∧ ¬�i).
From Example ??, it follows that T ⊢ ¬� . This is a contradiction, since �
is consistent. Now, let us assume both �i and ¬�i both are in Xk . That is, T
⊬ ¬(� ∧ �i ∧ ¬�i). This is a contradiction from exercise 4.4. Therefore either

one of �i or �j should be in Xk and hence in X̂ .

2. Let �l = �i ∧ �j and k = max{i, j, l}. We show that �l ∈ Xk i� �i ∈ Xk and
�j ∈ Xk . Let � = ⋀k

i=0 �i . First, let us assume �l ∉ Xk . That is, T ⊢ ¬(�∧�i ∧�j ).
From Demorgan’s exercise 4.1 we know this is equivalent to T ⊢ ¬�∨¬�i∨¬�j .
Since � is consistent, T ⊬ ¬� . Therefore (semantics of disjunction) gives, T
⊢ ¬�i or T ⊢ ¬�j . This shows that either �i ∉ Xk or �j ∉ Xk . Now let us

consider the other direction of the claim. Let �i ∉ Xk or �j ∉ Xk . In other
words, T ⊢ ¬�i or T ⊢ ¬�j . Applying or-introduction and demorgan’s laws
we get T ⊢ ¬(� ∧�i ∧�j ). Therefore � ∈ Xk . This proves the forward direction
of the claim.

We leave the rest of the claims for the reader to prove.

Our next lemma says that if a formula � is in X̂ , then � is satis�able.

Lemma 4.9 If � ∈ X̂ , then � is satis�able.

Proof : Let V be a set which contains either propositions or its negations. We de�ne
V as follows. If p ∈ X̂ , then p ∈ V . On the other hand, if p ∉ X̂ , then ¬p ∈ V . It is
easy to see that, there is a satisfying assignment which makes all formulas in V true.
We are done, if we show that V ⊨ � . We prove the following induction hypothesis
by structural induction on subformulas of � .


 ∈ X̂ ⟺ V ⊨ 


Case 
 = p, a proposition: If p ∈ X̂ , by de�nition V ⊨ 
 . On the other hand, if
p ∉ X̂ , we have by de�nition V ⊨ ¬p and therefore V ⊭ p.

Case 
 = ¬ : If ¬ ∈ X̂ , then (by properties of X̂ , Lemma 4.8)  ∉ X̂ . By
our induction hypothesis it follows V ⊭  and therefore (semantics of negation)
V ⊨ ¬ . Let us assume ¬ ∉ X̂ . By Lemma 4.8,  ∈ X̂ , which by IH gives us
V ⊨  . Therefore V ⊭ ¬ .
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Case 
 =  1 ∧  2: If  1 ∧  2 ∈ X̂ , then (Lemma 4.8)  1 ∈ X̂ and  2 ∈ X̂ . By IH,
V ⊨  1 and V ⊨  2 and therefore V ⊨  1 ∧  2. Let us now assume  1 ∧  2 ∉ X̂ .
Therefore (Lemma 4.8)  1 ∉ X̂ or  2 ∉ X̂ . From IH, we get V ⊭  1 or V ⊭  2.
Therefore V ⊨ ¬ 1 ∨ ¬ 2. Which by demorgan’s laws proves the case.

We leave the rest of the case as exercise.

We now have enough understanding to prove the completeness theorem.

Proof of Lemma 4.5. Let ¬� be consistent. Extend the set X = {¬�} to X̂ , the
maximal consistent set. Lemma 4.9, gives that all formulas in X̂ are satis�able and
therefore ¬� is satis�able too.

Problems

4.1 If T ⊢ � and T ⊢ ¬� , then T ⊢ � for all � .

4.2 Prove the remaining cases in Lemma 4.8.

4.3 Prove the remaining cases in Lemma 4.9.

4.1.4 Strong Completeness*

In Section 4.1.2 we saw the completeness theorem for the case when Γ is �nite. In
this section we will show that the completeness theorem is true even for the in�nite
case. Compactness theorem will help us in this regard.

Theorem 4.10 (Strong completeness) Let Γ be a set of formulas and  be a for-

mula. Then Γ ⊢  if Γ ⊨  .

Proof : Let Γ ⊨  . Therefore Γ ⊭ ¬ . It follows that Γ ∪ ¬ is not satis�able.
The compactness theorem of propositional logic (Theorem 1.10) gives us that there
exists a �nite subset Γ′ ⊆ Γ such that Γ′ ∪ ¬ is not satis�able. Therefore we have
Γ′ ⊭ ¬ . In other words Γ′ ⊨  . From the completeness theorem for propositional
logic (see Theorem 4.4) we have Γ′ ⊢  . Since Γ′ ⊆ Γ, we have Γ ⊢  .

4.2 Summary and Acknowledgements

This chapter is heavily in�uenced by the natural deduction presentation in Huth
and Ryan [HR04]. It also follows Enderton [End72]. The compactness proof follows
the presentation of Mukund and Suresh [MS11].
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4.3 Chapter exercises

4.1 [syntactic variant of De Morgan’s law] Prove the following.

1. ¬(� ∧ �) ⊣⊢ ¬� ∨ ¬� 2. ¬� ∧ ¬� ⊣⊢ ¬(� ∨ �)

4.2 [Hilbert’s axioms] Prove the following.

1. T ⊢ (� ⇒ (� ⇒ �)) 2. T ⊢ (¬� ⇒ ¬�) ⇒ (� ⇒ �)

3. T ⊢ (� ⇒ (� ⇒ 
)) ⇒ ((� ⇒ �) ⇒ (� ⇒ 
))

4.3 Show that the following are equivalent

1. �1, �2, … , �n ⊢ � 2. T ⊢ (�1 ∧ �2 ∧ …�n) ⇒ �

3. T ⊢ (�1 ⇒ (�2 ⇒ (… (�n ⇒ �))))

4.4 Prove the following.

1. ¬
1 ∨ 
2 ⊣⊢ 
1 ⇒ 
2

2. 
1 ∧ ¬
2 ⊣⊢ ¬(
1 ⇒ 
2)

3. ¬� ⊢ � ⇒ �

4. � ⇒ �, � ⇒ � ⊢ � ⇒ 


4.5 Show that the following are theorems

1. � ∨ ¬�

2. � ⇒ �

3. � ⇒ ¬¬�

4. (� ⇒ �) ⇒ (¬� ⇒ ¬�)

5. (¬� ⇒ �) ⇒ �

6. (¬� ⇒ (� ⇒ �))

7. ¬¬� ⇒ �

8. (� ⇒ �) ⇒ ((� ⇒ ¬�) ⇒ ¬�))

4.6 Let Ψ be a formula over only the proposition p. Assume that p ⊢  and
¬p ⊢  . Show that, T ⊢  .

4.7 Let us introduce a new connective xor: � ⊕ � which should abbreviate (¬� ∧
�) ∨ (� ∧ ¬�). Design introduction and elimination rules for xor.

4.8 Let P = {p1, … , pn} be a set of propositions. For a valuation v over P , we
de�ne Γv = {pi | v(pi) = T} ∪ {¬pi | v(pi) = F}. Consider a formula � such that
Γv ⊢ � for all valuation v. Show that T ⊢ � .
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4.9 Let v be a valuation. Then the following holds for all formulas � .

�v ⊭ � i� �v ⊨ ¬�

4.10 [Strong soundness theorem] If Γ ⊢ � then Γ ⊨ � .

4.11 If Γ is satis�able then Γ is consistent.

4.12 Consider a new natural deduction set of rules you have created. Let Γ be
a set of propositional formulas (the set need not be �nite). Let us also de�ne by
Γ ⊢∗ � to be a proof of � from Γ using your natural deduction rules. Let us also say
that Γ is consistent, if you cannot prove � or ¬� using your natural deduction rules
for any � from Γ. Prove that the following two statements are equivalent.

1. If Γ ⊢∗ � then Γ ⊨ � .

2. If Γ is satis�able then Γ is consistent.

4.13 Design introduction and elimination rules for Nand operator. Consider the
logic which uses only negation and Nand operator as logical symbols. Prove the
completeness theorem using the introduction and elimination rules for Nand and
negation. Prove also the soundness theorem.

4.14 Prove the deduction theorem for a set (need not be �nite) Γ of propositional
formulas : Γ ⊢ (� ⇒ �) i� Γ ∪ {�} ⊢ � .

4.15 Prove or disprove the following statements.

1. If Γ1 ⊆ Γ2 and Γ1 is consistent then Γ2 is consistent.

2. If Γ1 ⊆ Γ2 and Γ2 is consistent, then Γ1 is consistent.





CHAPTER 5

RANDOMIZED ALGORITHMS*

In this section we will look at randomized algorithms for propositional formulas. In
the �rst subsection, we give a polynomial time algorithm for checking satis�ability
for 2-CNF formulas. Then we give an exponential time algorithm checking satis-
�ability for 3-CNF formulas. This algorithm will be better than the trivial O(2n)
algorithm of going through all the assignments to the n propositions. You will ob-
serve that both the algorithms are easy to describe. The di�cult part is proving that
the algorithm answers correctly with “high" probability.

5.1 CNF formulas

5.1.1 2-CNF

The algorithm is given in Algorithm 10. In the algorithm the number of times the
loop needs to be iterated (i.e. m) will be �xed later depending on the con�dence in
the algorithm the user requires.

The following claim is an easy observation about the algorithm.

Logic for CS, First Edition.

By Sreejith A. V. Copyright © 2021 xxx
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Algorithm 10 Randomized algorithm for 2CNFSAT
Input A 2-CNF formula �
Output: yes if � is satis�able, no otherwise.

1: function 2CNFSAT(�)
2: Start with an arbitrary truth assignment to � .
3: Let m = 2n2 where n is the number of propositions in �
4: for (m steps) do
5: if (assignment makes � true) then return yes
6: Choose a clause not satis�able.
7: Choose uniformly at random one of the propositions in the clause and

change its assignment.
8: end for

9: return no
10: end function

Lemma 5.1 If the formula � is unsatis�able then Algorithm 10 returns UNSAT. Con-

tra positively, if the algorithm returns SAT, then the formula is satis�able.

Due to the above lemma, the important question we need to answer is, if the
formula is satis�able, how often will the algorithm return UNSAT. That is, what
is the probability that the algorithm fails. So, let us assume that the formula is
satis�able and try to answer how long will the algorithm take to return SAT. This
will help us in deciding what is a good value for m.

We now try to estimate the expected running time of the algorithm, assuming
the formula is satis�able and the loop runs for ever (i.em = ∞). Let S be a satisfying
assignment for � . We will try to �nd the expected running time for �nding S. Note
that, there may be other satisfying assignments and the algorithm might �nd them
before it �nds S. Therefore, the expected running time we �nd is a worst case
estimate. Consider the itℎ iteration of the loop. We de�ne Ai and Xi as follows

Ai = the assignment at the beginning of the itℎ iteration of the loop

Xi = the number of variables whose assignments in Ai di�er from that of S

We can try to understand some properties of Xi . Note that if Xi = n, then all
assignments to variables in Ai di�er from S. The algorithm therefore will �nd a
clause which is not satis�able. In that clause, assignments to both the propositions
are wrong and hence no matter which proposition we pick and change the assign-
ment we get that Xi+1 = n − 1.

Prob [Xi+1 = n − 1 | Xi = n] = 1

Let us now move on to the general case when Xi = k < n. We are interested in
identifying the probability of Xi+1 = k − 1. Let us analyse our algorithm. We have
k assignments di�ering from S and our algorithm picks a clause which is not sat-
is�able. Atleast one of the proposition in this clause is assigned a truth value in Ai
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which is di�erent from that in S (note that, it could happen that both the propo-
sitions are assigned di�erently). Our algorithm picks one of the two proposition
with equal probability and changes its assignment. Therefore, we pick a proposi-
tion whose value is di�erent with probability greater than or equal to 1

2 . If both the
propositional values are di�erent we pick with probability 1. Otherwise we pick
with probability 1

2 . Therefore

Prob [Xi+1 = k − 1 | Xi = k] ≥
1
2

A similar analysis also gives us

Prob [Xi+1 = k + 1 | Xi = k] ≤
1
2

Our current understanding is captured by the following set of equations and in
Figure 5.1.

Prob [Xi+1 = n − 1 | Xi = n] = 1

Prob [Xi+1 = k − 1 | Xi = k] ≥
1
2
, ∀k, where 0 < k < n

Prob [Xi+1 = k + 1 | Xi = k] ≤
1
2
, ∀k, where 0 < k < n

(5.1)

Let us assume that when we enter the �rst loop, we have an assignment such that
X1 = k. We are interested in �nding out how many steps m are required such that
Xm = 0. Note that, at any iteration of the loop, we can go right one step in the
�gure (towards n) with probability greater than or equal to half and we can move
left (towards 0) with probability, less than or equal to half.

Figure 5.1 At each loop iteration, the
algorithm walks one step towards the left or
right with probability ≥ 1

2 or ≤ 1
2 respectively.

The walk given by Equation 5.1 is di�cult to analyse and therefore we analyse
a “pessimistic" version of the above probability distribution. The equations in this
version are approximated by a “Markov chain" as follows (see also Figure 5.2).

Prob [Xi+1 = n − 1 | Xi = n] = 1

Prob [Xi+1 = k − 1 | Xi = k] =
1
2
, ∀k, where 0 < k < n

Prob [Xi+1 = k + 1 | Xi = k] =
1
2
, ∀k, where 0 < k < n

(5.2)

Note that, in the former setting, the probability of going left at any point was
greater or equal to in the latter setting. Therefore, the probability of reaching 0 inm
number of steps is greater in the former than in the latter. Therefore, the expected
number of steps to reach 0 from k using these set of equations is greater than what
we had before. We will give an upperbound for these sets of equations.
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Figure 5.2 Markov Chain approximation:
At each loop iteration, the algorithm walks one
step towards the left or right with probability
exactly 1

2 . This is a worst case scenario for our
algorithm.

Let k be such that 0 ≤ k ≤ n. We will denote by Zk , the random variable repre-
senting the number of steps from k to 0. We are interested in the expected value of
Zn (denoted by E[Zn]). The Equations 5.2 gives us the following

E[Z0] = 0
E[Zn] = 1 + E[Zn−1]

∀ 0 < k < n, E[Zk] =
1
2
(1 + E[Zk−1]) +

1
2
(1 + E[Zk+1)]

= 1 +
1
2
(E[Zk−1] + E[Zk+1])

(5.3)

This contains n + 1 equations on n + 1 variables. The following claim holds for
equations 5.3.

Lemma 5.2 For all k, where 0 ≤ k < n we have E[Zk] = 2nk − k2

Proof : The proof is by induction on k. It is easy to observe that the claim holds
for the base case k = 0. Let us assume it true for some k and show that it holds for
k + 1. We know the following

E[Zk] = 1 +
1
2
(E[Zk−1] + E[Zk+1])

Therefore, the lemma holds due to the following analysis

E[Zk+1] = 2(E[Zk] − 1) − E[Zk−1]

= 2(2nk − k2 − 1) − (2n(k − 1) − (k − 1)2)
= 2(2nk − k2 − 1) − (2nk − 2n − (k2 − 2k + 1))
= 2nk − k2 − 1 + 2n − 2k

= 2n(k + 1) − (k + 1)2

From this, we get that

E[Zn] = 1 + 2n(n − 1) − (n − 1)2 = n2

In other words, the expected number of steps required from any position k to 0 is
less than or equal to n2. This proves the following.

Lemma 5.3 If a 2-CNF formula is satis�able, then the algorithm 10 outputs SAT in

an expected running time of at most n2.
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With the above lemma, we can derive a “good" value for m. We show that, if
m = 2n2t , then the algorithm answers correctly with a probability greater than or
equal to (1 − 1

2t ).

Theorem 5.4 Let m = 2n2t . Then Algorithm 10. fails with probability less than or

equal to
1
2t .

Proof : We know that if the formula is not satis�able, the algorithm does not fail.
So, let us assume that the formula is satis�able. Let Z be the random variable rep-
resenting the number of steps taken to output SAT. Applying Markov’s inequality
to the above lemma gives us

Prob [Z ≥ 2n2] ≤
1
2

Let us consider our algorithm as running t loops with each loop running 2n2 times.
Then, an inside loop fails with probability less than or equal to half. Hence, the
probability of the algorithm failing t times is given by the union bound as

Prob [ algorithm fails ] ≤ 1
2t

This ends the proof.

5.1.2 3-CNF

Our algorithm will be a modi�cation of the 2-CNF algorithm. What could go wrong
if we applied the same algorithm for the 3-CNF case. The Markov chain for a 3-CNF
formula is given in Figure 5.3. Exercise ?? shows that the expected running time
for this algorithm is O(2n). This is not good enough, since even going through all
possible solutions takes only this much time.

Figure 5.3 Markov Chain approximation:
At each loop iteration, the algorithm walks one
step towards the left or right with probability 1

3 ,
and 2

3 respectively. This is a worst case scenario
for our algorithm.

We modify our algorithm as follows.
As in the 2-CNF algorithm, if the formula is unsatis�able, the algorithm will re-

turn UNSAT. Let us now calculate the expected running time of the algorithm if
m = ∞ and assuming the formula is satis�able. Like in the previous analysis, let
S be the satisfying assignment. Let us now consider the run of the outer loop. We
start from an arbitrary assignment for � . For the itℎ iteration of the inner loop we
denote by Ai the assignment at the beginning of the inner loop. We want to bound
the probability that the 3n steps of the inner loop does not identify the satisfying
assignment. Let us assume that after the initial arbitrary assignment, k many propo-
sitions are wrongly assigned. Let us denote by qk the probability that we reach a
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Algorithm 11 Randomized algorithm for 3CNFSAT
Input A 3-CNF formula �
Output: yes if � is satis�able, no otherwise.

1: function 3CNFSAT(�)
2: Let m = 2

√
n
c ( 43)

n , where n is the number of propositions in �
3: for (m steps) do
4: Start with an arbitrary truth assignment to � .
5: for (3n steps) do
6: if (assignment satis�es �) then return yes
7: Choose a clause not satis�able.
8: Choose uniformly at random one of the propositions in the clause

and change its assignment.
9: end for

10: end for

11: return no
12: end function

satisfying assignment within 3n steps of the inner loop. That is, the probability of
reaching 0 from k by doing a random walk on the Markov Chain given in Figure
5.3. Note that, in the special case of k = 0, we have q0 = 1. For a general k > 0,
there is no bound on the number of left or right moves required to reach 0. Let us
consider, a special case when the number of right moves is k and the number of left
moves is 2k. Clearly qk is greater than the probability of this happening. Thus

qk ≥
3k!
k!
2k!(

1
3)

2k
(
2
3)

k

≥
c1
√
3k( 3ke )

3k

c2
√
k( ke )kc2

√
2k( 2ke )2k

(
1
3)

2k
(
2
3)

k

≥ c
1
√
k
1
2k

, for a constant c

In the second step, we used Stirling’s approximation. It says there are constants c1
and c2 such that for all n > 0, c1

√
n(ne )

n ≤ n! ≤ c2
√
n(ne )

n .
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We now have a bound on qk . Let us now calculate the probability q that we �nd
the satisfying assignment given that we start from a random assignment. Then,

q =
n
∑
k=0

Prob [assignment to exactly k propositions are di�erent from that of S ] × qk

≥
1
2n

+
n
∑
k=1

(
n
k)

1
2n

c
√
k
1
2k

≥
1
2n

c
√
n
+

n
∑
k=1

(
n
k)

1
2n

c
√
n
1
2k

=
c

√
n2n

n
∑
k=0

(
n
k)

1
2k

=
c

√
n2n

(1 +
1
2
)n ( using the expansion for (1 + 1

2
)n)

=
c
√
n(
3
4)

n

Thus the probability of success starting from an arbitrary assignment and walk-
ing 3n steps is ≥ c√

n(
3
4)

n . Thus the expected running time of the outer loop for
success is given by

O(
√
n(
4
3)

n)

Let a be denoted by this number. Thus the total number of steps of the algorithm
is a × 3n. We will now show that taking m = 2at will ensure that the probability of
failure of our algorithm is less than or equal to 1

2t .

Theorem 5.5 Let a =
√
n
c ( 43)

n) and m = 2at . Then the running time of Algorithm

11. is O(n
3
2 ( 43)

n) and the probability of failure is less than or equal to
1
2t .

Proof : The running time of the algorithm is 3n ×
√
n
c ( 43)

n) = O(n
3
2 ( 43)

n). The
algorithm will fail only if the formula is satis�able. Let Z be the random variable
denoting the number of outer loops required for �nding the satisfying assignments.
Using Markov’s inequality we can show that

Prob [Z ≥ 2a] ≤
1
2

Let us again consider that we are running the algorithm t times and each time we
are running the outer loop for 2a times. Thus the probability of failure for all the t
times is given by the union bound by

Prob [algorithm fails ] ≤ 1
2t



84 RANDOMIZED ALGORITHMS*

5.2 Summary and Acknowledgements

The chapter follows the presentation in Mitzenmacher and Upfal [MU05].



PART II

FIRST ORDER LOGIC





CHAPTER 6

SYNTAX AND SEMANTICS

6.1 Need for a richer logic

We had seen that propositional logic can be used for reasoning as in the following
example.

EXAMPLE6.1

(Reasoning in propositional logic:)

Consider the following two statements.
Person A: If there is �re, then there is smoke. There is no smoke on the hill.

Therefore, there is no �re.

Person B: If there is �re, then there is smoke. There is smoke on the hill. Therefore,

there is �re.

Clearly, Person A’s statement is logically correct while that of Person B is not.
We can check this by encoding these two reasoning in propositional logic. See
Exercise??. We observe that the propositional logic formula corresponding to
Person A is valid while the other one is not.

Logic for CS, First Edition.
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Consider the reasoning given in Table 6.1. Which one of the reasoning is correct?

Proof A
1. All mathematicians are intelligent.
2. Ramanujan was a mathematician.
3. Therefore, Ramanujan was intelligent.

Proof B
1. There is a mathematician who is intelligent.
2. Ramanujan was a mathematician.
3. Therefore, Ramanujan was intelligent.

Table 6.1 Two proofs - One is correct, one wrong.

We can see that Proof A is correct, whereas Proof B is not. Natural deduction of
propositional logic will not help us to reach a correct conclusion in this case. We
need a stronger, richer logic for these kind of reasoning. First order logic (also called
predicate logic) helps us in this regard.

6.2 Introduction to first order logic

First order logic is a family of logics. First order logic might be represented in short
as FO, or FOL or 1st order logic. There are things which are common to all the logics
and things which are di�erent.

common among first order logic: Like in propositional logic, we need to have a
set of variables. Unlike in propositional logic case, the variables in �rst order logic
are not boolean variables. We will denote the variables by x, y, z, x1, x2, … , y1, y2, … .
The next thing in common are the logical symbols. They are of three categories.

1. propositional logic symbols: This consists of {∧, ∨, ¬,⇒}

2. quanti�ers: This consists of ∀ (called for all ) and ∃ (called there exists ).

3. equality: The symbol = denotes equality. It will be used to denote an object is
equal to another object. For example: The prime minister of India = Narendra
Modi.

logic specific symbols: The logic speci�c symbols are of three types.

1. constant symbols

2. function symbols and

3. relational symbols

Before we go into a formal introduction of �rst order logic, let us look at a few
examples from the family of �rst order logic.
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6.2.1 Logic for number theory

The logic speci�c symbols are

1. constant symbols: zero and one denoted by 0 and 1

2. function symbols: addition and multiplication denoted by + and ×.

3. relation symbols: less than or equal to relation denoted by ≤.

Let us look at some example properties which can be expressed in �rst order logic.
The following formula says that “x is a prime number".

prime(x) ∶∶= ∀y ∀z((x = y × z) ⇒ ((y = x) ∨ (z = x)))

The formula says that for all numbers y and z such that their product equals x
means that either y or z is equal to x . This is a property which is satis�ed only by
primes. In short formula prime(x) becomes “true" only when x is a prime number.
Note an important fact here is our assumption on what are the values y and z can
take. We have assumed here that all variables will only take natural numbers. We
will later see that the universe for this logic will be natural numbers.

Let us look at a few other example properties which we can write: x is an even
number can be written as

even(x) ∶∶= ∃y (x = y + y)

We can also write mathematical theorems in �rst order logic. The following formula
says “there are in�nite number of primes".

∀x (primes(x) ⇒ (∃y (primes(y) ∧ (x ≤ y) ∧ ¬(x = y)))

The formula can be read as, for all primes x , there exists a prime number y which
is greater than equal to x and not equal to x (in short greater than x).

6.2.2 Logic for Graph theory

6.2.3 Logic for set theory

In the logic for set theory, there is only one speci�c symbol. The relation symbol
called member of (denoted by ∈). The following formula says that “x is an empty
set".

empty(x) ∶∶= ∀y (¬(y ∈ x))
Similarly the following formula says that “there is only one empty set".

∀x∀y ((empty(x) ∧ empty(y)) ⇒ (x = y))
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6.2.4 Logic for IIT Goa

In the logic for IIT Goa, we have the constants: Sreejith, Raj, Neha. The unary

relations (relations with arity 1) are student and f aculty. We denote by student(x)
(respectively f aculty(x)) to mean that x is a student (resp. faculty). We also have a
binary relation teacℎes(x, y)which means x teaches y . With this logic, we can state
that Sreejith and Neha are teachers whereas Raj is a student. Other complicated
sentences can also be formed. For example, the following statement says that there
is a faculty who does not teach anyone.

∃x∀y(f aculty(x) ∧ ¬(teacℎes(x, y)))

6.2.5 Logic of empty symbols

In this logic, there are no constant, functions or relation symbols. Yet, we can talk
about some properties. For example, we can say that the universe contains only
one element.

∀x∀y (x = y)
We can also say that there are atleast 2 elements in the universe.

∃x∃y∃z (¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z))

Thus, we can talk about “atmost many elements" or “atleast many elements" in the
universe.

6.3 Syntax

Like in propositional logic, we de�ne the syntax of �rst order logic. The syntax
gives the rules for de�ning “meaningful" sentences in the logic. We have mentioned
earlier that �rst order logic is a family of logics. Therefore, to �x the syntax we
need to specify the constants, functions and relation symbols. This is called the
language of the logic. Once the language is �xed, we can talk about the syntax of
that particular logic. Let us �x the language as having

1. constant symbols: We will denote a1, a2, … as the set of constant symbols.

2. function symbols: We will denote by f1, f2, … as the set of function symbols.
Note that when the functions symbols are mentioned, we also need to mention
the arity of the functions. The arity of a function is de�ned as the dimensional-
ity of its domain. For example, the addition and multiplication functions have
arity 2 whereas a square function has arity 1.

3. relation symbols: We will denote by R1, R2, … as the set of relation symbols.
Again, we need to mention the arity of the relation symbols. For example, the
arity of ≤ is 2, whereas the arity of student(x) is one. Relations of arity 1 are
called unary relations whereas those with arity 2 are called binary relations .

Once the symbols are de�ned, we can give the syntax of the logic.
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6.3.1 Well formed formulas

6.3.1.1 Step 1 (Define the collection of words that denote objects) : Intuitively,
terms represents words which denotes the objects of our universe.

De�nition 6.1 (terms) The set of terms is inductively de�ned as the smallest set X
which

1. contains all constant symbols and variables and

2. is closed under all function symbols fi . That is, if t1, … , tn are terms, then fi(t1, … , tn)
is a term. Here fi is a function of arity n.

terms ∶∶=  ( all words over symbols ,Constants ⋃ Variables, {f | f is a function})

In Baukus normal form, the grammar for terms can be written as follows.

t ∶∶= c | x | f (t, t , … , t)

Let us look at the examples.

Case: Logic of number theory: Here are a few examples of terms in the logic
of number theory: 0, 1, x, y, z etc. Here is another example got by applying the
addition and multiplication functions: (1+1) × (x ×y ×y)+ (1+1+1)× (y ×y)+ (x ×y).

As you could observe, the terms represent the polynomials. The following claim
is easy to prove.

Claim 6.1 Every term represents a polynomial. Moreover, for every polynomial, there

is a term equivalent to it.

Note that the following formulas are not terms: x = y, ∃x (x × x) or x ≤ y .

Case: Logic of set theory: In the logic of set theory, the only terms are the
variables. This is because, there are no constants or function symbols.

Case: Logic of IIT Goa: In the logic for IIT Goa, we have that there are no func-
tions symbols. Therefore, the only terms are the variables and the constants, Sree-
jith, Neha and Raj.

Case: Logic of empty theory: The only terms are the variables since there are no
constants or function symbols.

6.3.1.2 Step 2 (well formed formulas): To de�ne the well formed formulas (w�)
of �rst order logic, we need to �rst de�ne atomic formulas . They are the smallest
meaningful sentence we can write in the logic.

De�nition 6.2 (atomic formulas) In Baukus normal form, the grammar for atomic

formulas can be written as follows.

atoms ∶∶= (t = t) | R(t, t, … , t)
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In the logic for number theory, examples of atomic formulas include 0 ≤ 1, ((1 + 1) ×
x + (y + y)) ≤ (1 + 1) etc. In the logic for set theory y ∈ x is an atomic formula. The
formulas student(x), teacℎes(x, y) are atomic formulas in the logic for IIT Goa. On
the other hand the formula (y ∈ x) ∧ (y ∈ z) is not an atomic formula since it uses
conjunction symbol.

The w�s can now be de�ned easily.

De�nition 6.3 (w�s) The well formed formulas are the smallest set which

1. contains the atomic formulas and

2. is closed under the logical operations {∧, ∨, ¬,⇒, ∀, ∃}.

In our notation,

w� ∶∶=  ( all words over symbols , atoms, {∧, ∨, ¬,⇒, ∀, ∃})

In other words, all atomic formulas are w�s and if � and � are w�s, then (¬�),
(�vee�), (� ∧ �), (� ⇒ �), ∃x (�), ∀x (�) are all w�s. In Baukus normal form, the

grammar for w�s can be written as follows.

� ∶∶= atoms | (¬�) | (� ∨ �) | (� ∧ �) | (� ⇒ �) | ∃x(�) | ∀x(�)

Informally, the terms are like functions (which output an element from the do-
main), whereas w�s are like predicates (which have a true or false value).

6.3.2 Free and bound variables

An important notion in well formed formulas is free variables . For a formula � , we
denote by FV(�) the set of all free variables in � . The free variables of a formula are
inductively de�ned as

FV(�) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

all variables in �, if � is an atomic formula
FV(�1) ∪ F (�2), if � is of type (�1 ∨ �2), (�1 ∧ �2), (�1 ⇒ �2)
FV(�), if � ∶∶= (¬�)
FV(�)⧵{x}, if � ∶∶= ∀x (�) or � ∶∶= ∃x (�)

For example, in the following formula x is a free variable whereas y is not.

∀y (x ≤ y)

On the other hand, the bound variables are those variables which are quanti�ed.
The bound variables of a w� � will be denoted by BV(�). In the above example y
is bound. Consider the following example. The variable x appears free as well as
bound.

(x + 1 = z) ∧ ∃x (x ≤ y)
A w� where all variables are bound is called a sentence . They play a major role in
�rst order logic.

De�nition 6.4 Substitutions
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6.4 Semantics

Semantics of �rst order logic over a language L consists of rules that assign true or
false values to all well formed �rst order formulas. Before we go into the formal
de�nition let us look at an example. Consider the following formula.

∀x (R(x) ⇒ (∀y (E(x, y) ⇒ B(y)))) ∧

∀x (B(x) ⇒ (∀y (E(x, y) ⇒ R(y)))) ∧

∀x (R(x) ∨ B(x)) ∧

∀x (R(x) ⟺ ¬B(x)) ∧

∀x ∀y (E(x, y) ⇒ E(y, x))

We need to give a meaning to this formula. In propositional logic, a w� gets a
meaning when an assignment is given. We are interested in �nding out what is the
“assignment" for a �rst order logic formula. This is called as a structure (in some
books it is called as amodel ).

De�nition 6.5 (structure) A structure over the language L of function symbols, re-

lation symbols and constant symbols consists of the following.

1. A set (usually called universe ) U .

2. An interpretation  which

(a) assigns a function f  ∶ U k → U for every function symbol f of arity k in L.

(b) and assigns a relation f  ⊆ U k
for every relation symbol f of arity k in L.

(c) and assigns a constant c ∈ U for every constant c in L.

For example, for an L = {R, F , G, c, d}where R is a relation of arity 2, F and G are
relations of arity 2 and c, d are constant, a structure can (ℕ, ≤, +, ×, 0, 1). Consider
another example.

EXAMPLE6.2

Let L = {E} where E is a relation E of arity 2.

� ∶∶= ∀x ∃y ∃z((E(x, y) ∧ E(x, z) ∧ y ≠ z) ∧ ∀t(E(x, t) ⇒ ((t = y) ∨ (t = z))))

One way to build a structure for L is to think of E as an edge relation in graph.
Then, the formula above is talking about the property that “every vertex has
out degree exactly 2". Therefore an example structure which does not satis�es
this formula is: (U = {1, 2, 3}, E = {(1, 2), (2, 3), (3, 1}). A structure which does
satisfy this property is (U = {1, 2}, E = {(1, 2), (1, 1), (2, 1), (2, 2)}).
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Even though we have not formally de�ned the semantics, you already have an idea
of how to check if a formula satis�es a structure. We are now in a position to give
the semantics of FO. To de�ne semantics over w�s which are not sentences (that is
those w�s which have free variables) we also need to assign every free variable to
some element in the universe. An assignment , s is therefore a function which maps
every free variable to an element in the universe. That is,

s ∶ {Free variable} → U

The question we now try to answer is, when can we say that (M, s) satis�es �
where � is a w� over language L and M is a structure over L and s assigns values
to the free variables in � . It is �rst easier to write this in terms of a “recursive"
algorithm (See Algorithm 13 which uses 12 for evaluating terms in the formula).

Algorithm 12 Evaluate a term of �rst order logic.
Input A term t over language L, a structure M over L and an assignment s

which maps the free variables to the universe.
Output: an element a ∈ U such that the term on assignment s evaluates to a.

1: function Evaluate(t , M , s)
2: if (t ∶∶= x) then return s(x)
3: if (t ∶∶= c) then return c
4: if (t ∶∶= f (t1, … , tn)) then return f  (Evaluate(t1), … ,Evaluate(tn))
5: end function

This algorithmic way to de�ne semantics has a problem because the universe in
M can be in�nite. We therefore need to give a “non-deterministic" de�nition.

De�nition 6.6 (semantics for �rst order logic) Let � be a w� over a language L
and M, s be a structure over L and s maps all variables to assignments. We de�ne

(M, s) satis�es � inductively.

1. (M, s) satis�es (t1(x1, … , xn) = t2(x1, … , xn)) if evaluating t1 and t2 using s satis-
�es � .

2. (M, s) satis�es R(x1, … , xn), if R (s(x1), … , s(xn)) = T.

3. (M, s) satis�es  1 ∨  2, if (M, s) satis�es  1 or (M, s) satis�es  2.

4. (M, s) satis�es ¬ , if (M, s) does not satisfy  .

5. (M, s) satis�es ∃x  , if there exists an a ∈ U such that (M, s ∪ {x = a}) satis�es
 .

6. (M, s) satis�es ∀x  , if for all a ∈ U , (M, s ∪ {x = a}) satis�es  .
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Algorithm 13 Semantics of First order logic.
Input A FO w� � over language L, a structure M over L and an assignment s

which maps the free variables to the universe.
Output: T if � is satis�able, F otherwise.

1: function checkFO-SAT(� , M , s)
2: if (� ∶∶= (t1(x1, … , xn) = t2(x1, … , xn))) then
3: if (Evaluate(t1, M, s) = Evaluate(t2, M, s)) then return T
4: end if

5: if (� ∶∶= R(x1, … , xn)) then
6: if (R (s(x1), … , s(xn)) = T) then return T
7: end if

8: if (� ∶∶= ( 1 ∨  2)) then
9: return (checkFO-SAT( 1, M, s) ∨ checkFO-SAT( 2, M, s))

10: end if

11: if (� ∶∶= ¬ 1) then return ¬ checkFO-SAT( 1, M, s)
12: if (� ∶∶= ∃x  ) then
13: for (a ∈ U ) do
14: if (checkFO-SAT( ,M, s ∪ {x = a}) = T) then return T
15: end for

16: return F
17: end if

18: if (� ∶∶= ∀x  ) then
19: for (a ∈ U ) do
20: if (checkFO-SAT( ,M, s ∪ {x = a}) = F) then return F
21: end for

22: return T
23: end if

24: end function

6.5 Satisfiable and Valid formulas

We say that a �rst order w� � over language L is satis�able, if there exists a structure
M over L and an assignment s ∶ { Free variables } → U such that (M, s) satis�es � .
Similarly, we say that a �rst order w� � over language L is valid, if for all structures
M over L and for all assignments s ∶ { Free variables } → U we have that (M, s)
satis�es � .

Let us look at some example formulas.

Claim 6.2 The following formulas (called as Hilbert’s axioms) are valid.

1. (∀x Q(x)) ⇒ Q(y)

2. (∀x (P(x) ⇒ Q(x))) ⇒ ∀x(P(x) ⇒ Q(x))

3. � ⇒ ∀x � if x is not a free variable in �.
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Proof : We give the proof for the �rst formula. Let � ∶∶= (∀x Q(x)) ⇒ Q(y)).
Consider an arbitrary structure M and assignment s which satis�es � . Consider the
following two cases

1. (M, s) does not satisfy (∀x Q(x)): Then � is satis�ed by (M, s) due to the seman-
tics of implication (if the left hand side of the implication is false, then formula
is true).

2. (M, s) satis�es (∀x Q(x)): Then for all a ∈ U , where U is the universe in our
structure M , we have that Q (a) is true. In particular Q (s(y)) is true. Again,
due to the semantics of implication, we have that (M, s) satis�es � .

The formula � is valid since the formula is satis�ed by the structure in all cases.
A similar argument will show that the other two formulas are also valid.

We will now de�ne equivalent formulas.
De�nition 6.7 (semantic equivalence) Let �1 and �2 be w�s over a language L.
We say that �1 is semantically equivalent (equivalent for short) if for all structuresM
and assignment s, we have that

(M, s) satis�es �1 i� (M, s) satis�es �2

We denote by �1 ≡ �2 to mean that �1 and �2 are equivalent.

The following claim shows an equivalence.
Claim 6.3

¬(∀x �) ≡ ∃x ¬�

Proof : We will �rst show the forward direction of the proof. Consider an arbitrary
(M, s) which satisfy the formula ¬(∀x �). Then

(M, s) satisfy ¬(∀x �)
⇔ (M, s) does not satisfy ∀x �
⇔ (M, s ∪ {x = a}) does not satisfy � for some a
⇔ (M, s ∪ {x = a}) satisfy ¬�)
⇔ (M, s) satisfy ∃x �

We now show the other direction. Again, consider an arbitrary (M, s) which
satisfy the formula ∃x ¬�. Then

(M, s) satisfy ∃x ¬�
⇔ (M, s ∪ {x = a}) satisfy ¬�
⇔ (M, s ∪ {x = a}) does not satisfy �
⇔ (M, s) does not satisfy ∀x ¬�
⇔ (M, s) satisfy ¬∀x ¬�
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Problems

6.1 Show that the following formulas are valid

1. ∃x (P(x) ⇒ ∀x P(x))

2. (∀x (P(x) ⇒ Q(x))) ⇒ (∀x(P(x) ⇒ Q(x)))

3. (� ⇒ ∀x �), if x is not a free variable in �.

4. (∃y ∀x R(x, y)) ⇒ (∀x∃y R(x, y))

5. (∀x P(x)) ⇒ (∃x P(x))

6.2 Show that the following formulas are not valid.

1. (∀x(P(x) ⇒ Q(x))) ⇒ (∀x (P(x) ⇒ Q(x)))

2. (∀x ∃y R(x, y)) ⇒ (∃y∀x R(x, y))

3. (∃x P(x)) ⇒ (∀x P(x))

6.3 Show the following equivalences

1. ¬∃x � ≡ ∀x ¬�

2. ∀x∀y � ≡ ∀x∀y �

3. ∃x∃y � ≡ ∃y∃x �

4. ∀x� ∧ ∀x ≡ ∀x (� ∧  )

5. ∃x� ∨ ∃x ≡ ∃x (� ∨  )

6.4 Show that the following are not equivalent

1. ∀x� ∨ ∀x ≢ ∀x (� ∨  )

2. ∃x� ∧ ∃x ≢ ∃x (� ∧  )

3. ∀x∃y� ≢ ∃y∀x�

6.5 Let � and  be w�s such that y ∉ FV(�) and x ∉ FV( ). Show the following

1. ∃x� ∧ ∃y ≡ ∃x ∃y (� ∧  )

2. ∃x� ∨ ∃y ≡ ∃x ∃y (� ∨  )

3. ∃x� ∧ ∀y ≡ ∃x ∀y (� ∧  )
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4. ∃x� ∨ ∀y ≡ ∃x ∀y (� ∨  )

5. ∀x ∃y (� ∧  ) ≡ ∃x ∀y (� ∧  )

6.6 Normal forms

6.7 Substitution

6.8 Semantic Entailment

First we de�ne what it means to say a structure and assignment satis�es a set of
w�s. Let Γ be a set of w�s and (M, s) be a structure and assignment pair. Then we
say that (M, s) satisfy Γ if (M, s) satisfy � for all � in Γ. That is

(M, s) satisfy Γ if ∀� ∈ Γ, (M, s) satisfy �

For a set of w�s Γ and a w� �, we denote by Γ ⊨ � to mean that for all structure
M and assignment s such that (M, s) satisfy Γ, we have that (M, s) satisfy �. That is,

Γ ⊨ � if for all (M, s) pair, ((M, s) satisfy Γ) ⇒ ((M, s) satisfy �)

6.9 Summary and Acknowledgements

The chapter is heavily in�uenced by the video lecture series of Dr. Shai Ben David
[BD]. The lectures itself follow the book by Enderton [End72]. The chapter also
follows the book by Huth and Ryan [HR04].

6.10 Chapter exercises

6.1 Let h stand for Holmes (Sherlock Holmes) and m stand for Moriarty. Give
�rst order logic formulas to express the following:

1. Holmes can catch anyone whom Moriarty can catch.

2. If anyone can catch Moriarty, then Holmes can.

3. If everyone can catch Moriarty, then Holmes can.

4. No one can catch Holmes unless he can catch Moriarty.
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5. Everyone can catch someone who cannot catch Moriarty.

6.2 Show that the following sentences are valid.

1. ¬� ⇒ (� ⇒ (� ⇒ �))

2. (� ∨ ¬�)

3. (¬p ⇒ ¬q) ⇒ (q ⇒ p)

4. ∀x(p(x) ⇒ q(x)) ⇒ (∃x p(x) ⇒ ∃x q(x))

5. (∀x (P(x) ∨ Q(x)) ∧ ∃x¬Q(x) ∧ ∀x (R(x) ⇒ ¬P(x))) ⇒ ∃x¬R(x)

6.3 Prove or disprove the validity of the following formulas.

1. ∃x (D(x) ⇒ ∀yD(y))

2. (∀x∃y (P(x) ⇒ Q(y))) ⇒ (∃y∀x(P(x) ⇒ Q(y)))

3. (∃xp(x) ⇒ ∃xq(x)) ⇒ ∀x(p(x) ⇒ q(x))

6.4 Consider the logic of numbers where the language of symbols is = {+, ×, 0, 1}
where + and × are the addition and multiplication functions and 0 and 1 are the con-
stant symbols for numbers zero and one. Answer the following.

1. Write a formula even(x) which expresses the property that x is an even num-
ber. In other words, the formula is true whenever x is substituted with an even
number and false when you substitute it with a number not even.

2. Write a formula lessthan(x, y) which says that x is less than y .

3. Write a formula div(x, y) which says that x divides y .

4. Write a formula prime(x) which says that x is a prime number.

5. Write a sentence which says that there are in�nitely many primes.

6. Write a formula lcm(x, y, z) which says that the lcm of x and y is z.

7. Goldbach’s conjecture states that every even integer greater than 2 is the sum
of two primes. Whether or not this is true is an open question of number
theory. Write a �rst order sentence which expresses Goldbach’s conjecture.

6.5 For each of the following w�s, write an equivalent formulas which uses only
the symbols {∃, ¬, ∨, ∧}.

1. (∀x(P(x) ⇒ Q(x)) ⇒ (∀x(P(x) ⇒ Q(x)))

2. (∃x∀y R(x, y)) ⇒ (∀x∃y R(x, y))
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6.6 Formulate a satis�able formula � in which a binary function symbol f occurs
such that for every structure A, if A ⊢ � then (A, fA) is a group.

6.7 Prove that every formula � can be transformed to an equivalent formula �
such that � is in recti�ed form.

6.8 Prove that every formula � can be transformed to an equi-satis�able formula
� such that � is in Skolem form.



CHAPTER 7

THE COMPUTATIONAL COMPLEXITY
OF SATISFIABILITY

7.1 Undecidability of first order logic

Consider the following problem.

FO-SAT
Input: A �rst order w� � .
Output: YES if � is satis�able, otherwise NO.

The above problem is undecidable. This follows from the fact that the validity
problem is undecidable.

FO-Validity
Input: A �rst order w� � .
Output: YES if � is valid, otherwise NO.

Theorem 7.1 The problem of checking whether a �rst order formula is valid is un-

decidable.

Logic for CS, First Edition.
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Proof : The proof is given by a reduction from halting problem of �rst order logic.

As a corollary we get this.

Theorem 7.2 The problem of checking whether a �rst order w� is satis�able is un-

decidable.

Proof : Assume the problem is decidable. We show that we can then decide the
validity problem. Let � be a formula given as input to the validity problem. Check
whether ¬� is satis�able or not. If it is satis�able, then � is not valid. Otherwise � is
valid. This is a contradiction, since we have shown above that the validity problem
is undecidable. Therefore, the satis�ability problem is undecidable.

7.2 Model checking problem

The model checking problem is decidable and it is PSpace-complete.

Model checking
Input: A FO structure M , assignment s and w� � .
Output: YES if (M, s) satis�es � , otherwise NO.

We can show that this problem runs in time (|M| + |s| + |�|)|�|.

7.3 Resolution and semi-decidability of Validity

7.4 Chapter exercises

7.1 Consider the model-checking problem: The input is a well formed �rst or-
der logic sentence � , and a �nite structure M . The output is Yes if M satis�es � .
Otherwise the output is No. Answer the following questions.

1. Give an algorithm which solves the model-checking problem.

2. Find out the running time of the algorithm.

3. How much space does the algorithm take.



CHAPTER 8

PROOF SYSTEM

8.1 Natural Deduction

The natural deduction rules are as follows
Recollect that for a w� �(x) and term t , we denote by �[t ↦ x] a substitution

of x by t in �. We will be interested in good substitutions.
Let us now look at natural deduction rules for �rst order logic. All the rules for

propositional logic are going to hold for �rst order logic too. We will now talk about
the extra rules.

(equality introduction) For all terms t and for all premises Γ, Γ ⊢ (t = t). This
rule says that for any term t , the formula (t = t) holds.

= i
(t = t)

Figure 8.1 equal to Introduction (= i)

(t1 = t2) �[t1 ↦ x]
= e

�[t2 ↦ x]

Figure 8.2 equal to elimination (= e)
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(equality elimination) If Γ ⊢ (t1 = t2) and Γ ⊢ �[t1 ↦ x], then Γ ⊢ �[t2 ↦ x].
The rule says that, let us assume we can prove that (t1 = t2). Then in any formula
where we can substitute t1, we should also be able to substitute t2. One small catch
is that, we need to assume that �[t1 ↦ x] and �[t1 ↦ x] are good substitutions.
Consider the following example. Let x × (y + 1) = x × y + x and z = x × (y + 1). Then
z = x × y + x . This can be deduced using equality elimination as shown below.

1. x × (y + 1) = x × y + x premise

2. z = w[x × (y + 1) ↦ w] premise

3. z = w[x × y + x ↦ w] = e 1,2

Figure 8.3 {x × (y + 1) = x × y + x, z = x × (y + 1)} ⊢ z = x × y + x

In the above proof, we identi�ed a di�erent way to write the second premise. It is
written as a substitution on a variable. This helps us to use the equal to elimination
rule.

(forall elimination) If Γ ⊢ ∀x �, then Γ ⊢ �[t ↦ x] for any term t. This rule is
fairly obvious. If we can prove ∀x �, it means that �[t ↦ x] is true for any term t .

∀x �
∀e

�[t ↦ x]

Figure 8.4 forall elimination (∀e)

(forall introduction) If Γ ⊢ �[a ↦ x] for a fresh variable a, then Γ ⊢ ∀x�. This
rule is tricky. It is better to understand this rule through an example. Let us see
how we prove the following A ⊆ C from the premises {A ⊆ B, B ⊆ C}.
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1. ∀x ((x ∈ A) ⇒ (x ∈ B)) premise A ⊆ B

2. ∀x ((x ∈ B) ⇒ (x ∈ C)) premise B ⊆ C

3. Let a be an arbitrary element.

4. Assume a ∈ A

5. Then a ∈ B (from A ⊆ B, ∀e and ⇒ e)

6. ∴ a ∈ C (from B ⊆ C , ∀e and ⇒ e)

7. (a ∈ A) ⇒ (a ∈ C) ⇒ i 4-6

8. Therefore, ∀x ((x ∈ A) ⇒ (x ∈ C)) (another way to say A ⊆ C)

Figure 8.5 A proof which picks an arbitrary element

The proof above is not a natural deduction proof (since we used other rules). The
proof was mentioned to show how we would have proved the transitivity property
of sets. The proof involves introducing a for all quanti�er in the conclusion. In the
above proof, we pick an arbitrary element and proved some property. Since, we
started of with an arbitrary element, the proof holds for any element. This is the
logic behind the proof. The below pictorial representation gives the rule.

Take arbitrary a
...

�[a ↦ x]
∀i

∀x �(x)

Figure 8.6 forall introduction (∀i)

Let us look at another example: From {∀x (Lion(x) ⇒ Strong(x)), ∀x Lion(x)}
we prove that ∀x Strong(x).
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1. ∀x (Lion(x) ⇒ Strong(x)) premise

2. ∀x Lion(x) premise

3. Take a arbitrary

4. (Lion(a) ⇒ Strong(a)) ∀e 1

5. Lion(a) ∀e 2

6. Strong(a) ⇒ e 5,4

7. ∀x Strong(x) ∀i 3-6

Figure 8.7 Proof of {∀x (P(x) ⇒ Q(x)), ∀x P(x)} ⊢ ∀x Q(x)

(existential introduction) If Γ ⊢ �[a ↦ x] for some term t, then Γ ⊢ ∃x�. This
rule is easy to understand. It says that, if there is a proof of � where x is substituted
with a term t , then it shows that there exists some element x which satis�es �. Note
that this rule is applicable only if the substitution is good.

�[t ↦ x]
∃i

∃x �(x)

Figure 8.8 exists introduction (∃i)

(existential elimination) If Γ ⊢ ∃� and Γ ∪ {�[a ↦ x]} ⊢ � for a fresh variable a,
then Γ ⊢ � . Since the rule is di�cult to see, let us explain by an example. Consider
the following two w�s: {∀x (Lion(x) ⇒ ∀y Af raid(y)), ∃x Lion(x)}. From these
premises we should be able to derive that ∀y Af raid(y). Here is an argument. Since
there exists a lion, consider a lion a. Therefore, we have that for all y Af raid(y).

1. ∀x (Lion(x) ⇒ ∀y Af raid(y)) premise

2. ∃x Lion(x) premise

3. Take an arbitrary a such that Lion(a)

4. Therefore, Lion(a) ⇒ ∀y Af raid(y) ∀e, 1

5. ∀y Af raid(y) ⇒ e 4,5

6. ∀y Af raid(y) from the above derivation

Figure 8.9 An example for existential elimination

We capture this rule in the following �gure.
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∃x �

Take arbitrary a such that �[a ↦ x]
...



∀i


Figure 8.10 exists elimination (∃e)

With this we �nish the rules of natural deduction. In the next section we will
see the soundness and completeness of natural deduction of �rst order logic.

8.2 Soundness and Completeness of Natural deduction

Soundness follows by a case analysis for each of the rules. It says that, the rules of
natural deduction “make sense".

Theorem 8.1 (soundness) Let Γ be a set of w�s and � a w� such that Γ ⊢ �. Then,
we have that Γ ⊨ �.

The question to ask is, what about the other direction. Can we show that, all for-
mulas which make sense, can be proved from the premises. Many mathematicians
were pondering over this quesion, when an young Gödel showed this in his PhD.
He argued that, if a set of w�s Γ satis�es a w� �, then we can prove � from Γ using
natural deduction.

Theorem 8.2 (Gödel’s completeness) Let Γ be a set of w�s and � a w� such that

Γ ⊨ �. Then Γ ⊢ �.

We skip the proof of completeness.

8.3 Chapter exercises

Use natural deduction to prove the following

1. T ⊢ ¬� ⇒ (� ⇒ (� ⇒ �))

2. (¬p ⇒ ¬q) ⊢ (q ⇒ p)

3. T ⊢ ∀x(p(x) ⇒ q(x)) ⇒ (∃x p(x) ⇒ ∃x q(x))

4. {∀x (P(x) ∨ Q(x)), ∃x¬Q(x), ∀x (R(x) ⇒ ¬P(x))} ⊢ ∃x¬R(x)

5. T ⊢ ∃x (D(x) ⇒ ∀yD(y))
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