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The Setting
❖ I want to learn Chess. 

❖ There are lakhs of websites which teach us to play Chess.

❖ But which one is the best? Which are the best 10 ones?

❖ This is the question, google pagerank tries to answer.

❖ Pagerank: Algorithm which ranks web-pages.

❖ Also means the ranking algorithm created by Larry 
Page, who along with Sergey Brin co-founded google.



Hyperlinks
❖ Consider two webpages which teach Chess:  

(A) Anand’s page (B) Bran’s page

❖ Let 5 pages have hyperlinks to A’s page, and 1 page to B’s

❖ More web pages interested in Anand’s Chess than Bran’s. 

❖ Maybe, this is a good way to rank.

❖ What if Kasparov’s page links to B’s page whereas A’s links are 
all from ordinary pages.

❖ The rank of the pages which link to A and B also important.

❖ A page is important if it is pointed to by other important pages.



Hyperlink Graph

❖ The vertices of the graph are 
web pages

❖ Edge from page X to page Y, if 
there is a hyperlink in X which 
points to Y.

❖ Number of webpages in the 
world = 1.5 billion The Biggest Graph 



❖ Observation: A page is important if it is pointed to by 
other pages.

❖ Let      be a page and          all pages which link to 

❖ Then, the rank of       is given by 

❖

r(Pi) = ∑
Pj∈l(Pi)

r(Pj)

Pi l(Pi) Pi

Pi

First Attempt



First Attempt contd..
❖ Some webpages link to lots of pages, some to less. 

❖ If there is one page which links to 100 Chess pages, whereas one page 
which links only to Anand’s page, then values should differ.

❖ Similar to: A person’s recommendation is more valuable if he/she gives 
less recommendations.

r(Pi) = ∑
Pj∈l(Pi)

r(Pj)
|Pj |

❖        denotes the number of hyperlinks in |Pj | Pj



Computing rank
❖ We use this formula to compute the rank of all pages.

❖ At the beginning the ranks of all websites made equal.

❖ The equation is applied to computer the rank.

❖ The equation applied successively.

rk+1(Pi) = ∑
Pj∈l(Pi)

rk(Pj)
|Pj |



Matrix Representation
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Matrix Representation
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copied from Fei Li’s slides
Pagerank = converging vector

Converges



❖ Each iteration involves a vector-matrix multiplication, 
which require O(n2) computation.

❖ The matrix is very sparse - most entries are 0. Estimates 
show, an average page has 10 links. Number of non-zero 
entries is = 10n.

❖ Sparse matrix multiplication can be done in O(n).

❖ Is M a Markov matrix?

What’s good in the Matrix?



What’s bad about the Matrix
❖ Will this rank computation go on indefinitely?

❖ Will this rank computation show periodic behaviour?

❖ Will it converge to multiple vectors?

❖ Does convergence depends on starting vector?

❖ Will convergence happen slowly?

Answer: Any of the above question can happen?



Another problem: loop
During each iteration, the loop accumulates rank but never distributes rank 
to other pages!



Second attempt
❖ Random surfer model: A surfer goes to a page, clicks on a  

link randomly, and traverse the web (a random walk).

❖ If a page is repeated, the importance of the page increases.

❖ This is exactly the model we had with Matrix M.

❖ First problem: What to do, when we hit a page with no 
links?

Answer: Go to another random page. What changes 
required in matrix?



Markov Matrix
0       0   1/3     0      0      0

1/2   0   1/3     0      0      0

1/2   0     0       0      0      0

0       0     0       0    1/2    1

0       0   1/3   1/2    0     0

0       0     0    1/2   1/2   0

0       1/6   1/3     0      0      0

1/2   1/6   1/3     0      0      0

1/2   1/6     0       0      0      0

0       1/6     0       0    1/2    1

0       1/6   1/3   1/2    0     0

0       1/6     0    1/2   1/2   0

Markov chain: Sum of column is 1

M S
no links: 0 column vector

ST = MT + (1
n

⃗1 ) ⃗a T



Is this good enough?
Answer: No! no guarantee of convergence. 

❖ Random surfer model: The surfer, walks through the web, but 
sometimes gets ``bored” and randomly go to some other 
webpage and start walking from there.

❖ Gives the Google matrix

G = (αS + (1 − α)
1
n

⃗1 ⃗1 T)

α = 0.85



Advantages of Google Matrix

❖ There is a unique converging vector for G.  
(because, all entries in G are strictly positive).

G = (αS + (1 − α)
1
n

⃗1 ⃗1 T)

G π * = π *
❖ G is not sparse but still, computation can be done fast.

Gπ = (αS + (1 − α)
1
n

⃗1 ⃗1 T)π

= αMπ + ( ⃗1 (α ⃗a T + (1 − α)
1
n

⃗1 T)π

❖ 20n steps, That is O(n) computation.



Pagerank = converging vector
❖ We check for convergence by repeatedly multiplying G.

π1 = G[1/n,1/n, …,1/n]T

π2 = Gπ1.
..

πk+1 = πk = Gπk

❖ Total computation is = 20kn

❖ Page rank = πk



Time taken: Depends on k
❖ G has an eigen value 1. Therefore, there exists eigen vector 

πk = Gπk

α❖ The largest eigen value is 1 and second largest is 

G50π ∼ c1.150.π* + c2α50π′�

❖ For α = 0.85, we have α50 = 0.000296, good accuracy 

❖ Total computation for pagerank: 20*50n steps = 1000n steps.



Thank you!


