
Chapter 1

Randomized QuickSort

Let us look at the quicksort algorithm

Algorithm 1 QuickSort

Input: An array x of n distinct elements
Output: Sorted array y

1: If n = 1 or 0 return x

2: pivot = x[0]
3: Create an array x1 containing all elements less than pivot (in the order

they appear in x)
4: Create an array x2 containing all elements greater than pivot (in the

order they appear in x).
5: Return the array [QuickSort(x1), pivot, QuickSort(x2)]

How many comparisons are done in the above algorithm? The pivot (x[0])
chosen at the first call to the quicksort function is compared with all the
elements in the array. That is, it is compared with n � 1 many elements.
The array is now split into two parts and quick sort called individually on
these arrays. Therefore,

Number of comparisons of x =

Number of comparisons of x1 + Number of comparisons of x2 + n� 1

Let us assume the input array x is in descending order. Then the array is
split into two parts, one containing n� 1 elements and the other containing
no element. Thus, the total number of comparisons satisfies the following
recurrence equation

T (n) = T (n� 1) + n� 1

1

1. Randomized QuickSort

We know that this is O(n2). Can we do better? The problem is, the pivot we
choose does not create arrays x1 and x2 of equal size. In the above scenario,
this appears in the worst form. One array of n�1 elements and another of 0
elements. Let us now assume, there is a “magician” who always picks a pivot
which divides the arrays into two equal halves. The recurrence equation for
the number of comparisons in this scenario is

T (n) = 2T (dn
2
e) + n� 1

This gives us O(n log n) many comparisons. It is clear that, if we could
simulate the working of a magician we have a faster algorithm. What does
the magician do? He always picks the median as the pivot. How fast can you
pick the median. It turns out, you can do this in linear time. The median-of-
medians algorithm is a non-trivial but beautiful algorithm which can output
the median in O(n) steps. This will give us the following recurrence on
the number of comparisons: T (n) = 2T (dn

2 e) + O(n). This will gives us a
deterministic O(n log n) algorithm.
In this lecture, we will show that a randomized algorithm can give you a
similar time. The algorithm is much simpler than the above median finding
algorithm. Let us first ask the following question. If I pick a pivot randomly,
what is the expected number of elements less than or equal to the pivot? Let
X be the number of elements less than or equal to the pivot.

Lemma 1.1. E[X] = n+1
2 .

Proof. Let y1, . . . , yn be the elements x1 to xn sorted in ascending order. Let
pi be the probability that yi is picked as the pivot. Since any of the yis can
be picked with equal probability we have pi =

1
n , for all i  n. Then

E[X] =
nX

i=1

(i⇥ pi) =
nX

i=1

(i⇥ 1

n
)

=
1

n

nX

i=1

i =
1

n

n(n+ 1)

2

=
n+ 1

2

The above lemma shows that picking a pivot randomly, splits the array into
half with high probability. This should help us get an O(n log n) algorithm
for the following randomized quicksort, where the pivot is picked randomly
every time.

2

Randomized Algorithms

Algorithm 2 RandQuickSort

Input: An array x of n distinct elements
Output: Sorted array y

1: If n = 1 or 0 return x

2: Pick a pivot randomly from the elements x1 to xn.
3: Create an array x1 containing all elements less than pivot (in the order

they appear in x)
4: Create an array x2 containing all elements greater than pivot (in the

order they appear in x).
5: Return the array [RandQuickSort(x1), pivot, RandQuickSort(x2)]

We now show that the expected number of comparisons made by the above
Randomized Quicksort is O(n log n).

Lemma 1.2. For any input x, the expected number of comparisons of the
Randomized Quicksort given in Algorithm 2 is O(n log n).

Proof. Let y1, . . . , yn be the elements sorted in ascending order. Let X be
the number of comparisons. Our aim is to find out the expectation of X.
Let Xij be the indicator random variable where

Xij =

(
1, if yi and yj are compared.

0, otherwise.
(1.1)

That is Xij is 1 if yi and yj are compared and 0 otherwise. Then X the
number of comparisons can be got by summing over all Xijs as follows

X =
n�1X

i=1

nX

j=i+1

Xij

By linearity of expectation we know that the expectation of X is the sum of
expectation of Xijs. That is

E[X] =
n�1X

i=1

nX

j=i+1

E[Xij]

So, let us now try to find the expectation of Xijs. Let us first find the
probability that yi and yj will be compared. Consider the elements Y =
{yi, yi+1, . . . , yj}. Note the following claim

Claim 1.3. If any of yi+1 to yj�1 is selected as pivot before yi or yj is selected
as pivot, then yi and yj will not be compared.

3

1. Randomized QuickSort

The reason is, in this case, yi and yj will go into separate arrays (in the above
algorithm yi will go into x1 and yj will go into x2). In other words, Xij = 0
if an element from Y \{yi, yj} is selected as pivot before yi or yj is picked as
pivot. What about the other direction.

Claim 1.4. If yi or yj is selected as pivot before any of the other elements
in Y are picked as pivot, then yi and yj will be compared.

To understand the above claim, let pi be picked before any of the other
elements in Y were picked. Then pi will be compared with all the other
elements in the array. Since none of Y \{yi} were picked as pivot before, all
the elements in Y are in the same array as yi. Therefore yi is compared with
all elements in Y , in particular it is compared with yj.
From the above two claims, it follows that Xij = 1 if and only if either yi or
yj is selected as pivot before any other element from Y \{yi, yj} is selected
as pivot. The question to ask now is, what is the probability for a k  n,
yk is selected as pivot before any other element from Y \{yk} is selected as
pivot. That is among Y , yk is selected as pivot the first. Note that for any
two di↵erent yk and yk0 in Y , this probability is the same. That is

Prob [y1 is selected as pivot first] = Prob [y2 is selected as pivot first]

= · · · = Prob [yk is selected as pivot first] = . . .

= Prob [yn is selected as pivot first]

Since they all have equal probability and because the probability that atleast
one of them will be selected first in Y has probability 1, we have for all k  n,

Prob [yk is selected as pivot first] =
1

|Y | =
1

j � i+ 1

We can now compute the probability that Xij = 1.

Prob [Xij = 1] = Prob [yi is selected as pivot first] + Prob [yj is selected as pivot first]

=
2

j � i+ 1

For the indicator random variable Xij, the expectation E[Xij] is given by

E[Xij] = 1⇥ Prob [Xij = 1] + 0⇥ Prob [Xij = 0]

=
2

j � i+ 1

4

Randomized Algorithms

Finally, we calculate the expected number of comparisons, E[X].

E[X] =
n�1X

i=1

nX

j=i+1

E[Xij] =
n�1X

i=1

nX

j=i+1

2

j � i+ 1

=
n�1X

i=1

n�i+1X

k=2

2

k
= 2

n�1X

i=1

n�i+1X

k=2

1

k
(rename j � i+ 1 to k)

 2
n�1X

i=1

nX

k=1

1

k

 2
n�1X

i=1

c log n (* there exists a constant c > 1 such that
nX

k=1

1

k
 c log n)

 2c(n� 1) log n

In other words, the expected number of comparisons (E[X]) is O(n log n).

5

