
Randomized SAT

In this chapter we will look at randomized algorithms for propositional for-
mulas. In the first section, we give a polynomial time algorithm for checking
satisfiability for 2-CNF formulas. Then we give an exponential time algo-
rithm checking satisfiability for 3-CNF formulas. This algorithm will be
better than the trivial O(2n) algorithm of going through all the assignments
to the n propositions. You will observe that both the algorithms are easy to
describe. The di�cult part is proving that the algorithm answers correctly
with “high” probability.

2.4 2-CNF

The algorithm is given in Algorithm 3. In the algorithm the number of times
the loop needs to be iterated (i.e. m) will be fixed later depending on the
confidence in the algorithm the user requires.

Algorithm 3 2-CNF Satisfiability

Input: A 2-CNF formula ↵

Output: ↵ is satisfiable or not.
1: Start with an arbitrary truth assignment.
2: for m steps do
3: if assignment makes ↵ true then

4: Return SAT
5: end if

6: Choose a clause not satisfiable.
7: Choose uniformly at random one of the propositions in the clause and

change its assignment.
8: end for

9: Return UNSAT.

The following claim is an easy observation about the algorithm.

7

2. Discrete probability distributions

Lemma 2.1. If the formula ↵ is unsatisfiable then Algorithm 3 returns UN-
SAT. Contra positively, if the algorithm returns SAT, then the formula is
satisfiable.

Due to the above lemma, the important question we need to answer is, if
the formula is satisfiable, how often will the algorithm return UNSAT. That
is, what is the probability that the algorithm fails. So, let us assume that
the formula is satisfiable and try to answer how long will the algorithm take
to return SAT. This will help us in deciding what is a good value for m.

We now try to estimate the expected running time of the algorithm, as-
suming the formula is satisfiable and the loop runs for ever (i.e m = 1). Let
S be a satisfying assignment for ↵. We will try to find the expected running
time for finding S. Note that, there may be other satisfying assignments and
the algorithm might find them before it finds S. Therefore, the expected
running time we find is a worst case estimate. Consider the i

th iteration of
the loop. We define Ai and Xi as follows

Ai = the assignment at the beginning of the i
th iteration of the loop

Xi = the number of variables whose assignments in Ai di↵er from that of S

We can try to understand some properties of Xi. Note that if Xi = n,
then all assignments to variables in Ai di↵er from S. The algorithm therefore
will find a clause which is not satisfiable. In that clause, assignments to both
the propositions are wrong and hence no matter which proposition we pick
and change the assignment we get that Xi+1 = n� 1.

Prob [Xi+1 = n� 1 | Xi = n] = 1

Let us now move on to the general case when Xi = k < n. We are interested
in identifying the probability of Xi+1 = k� 1. Let us analyse our algorithm.
We have k assignments di↵ering from S and our algorithm picks a clause
which is not satisfiable. Atleast one of the proposition in this clause is as-
signed a truth value in Ai which is di↵erent from that in S (note that, it
could happen that both the propositions are assigned di↵erently). Our algo-
rithm picks one of the two proposition with equal probability and changes its
assignment. Therefore, we pick a proposition whose value is di↵erent with
probability greater than or equal to 1

2 . If both the propositional values are
di↵erent we pick with probability 1. Otherwise we pick with probability 1

2 .
Therefore

Prob [Xi+1 = k � 1 | Xi = k] � 1

2

8

Randomized Algorithms 2.4. 2-CNF

A similar analysis also gives us

Prob [Xi+1 = k + 1 | Xi = k]  1

2

Our current understanding is captured by the following set of equations
and in Figure 3.1.

Prob [Xi+1 = n� 1 | Xi = n] = 1

Prob [Xi+1 = k � 1 | Xi = k] � 1

2
, 8k, where 0 < k < n

Prob [Xi+1 = k + 1 | Xi = k]  1

2
, 8k, where 0 < k < n

(2.1)

Let us assume that when we enter the first loop, we have an assignment such
that X1 = k. We are interested in finding out how many steps m are required
such that Xm = 0. Note that, at any iteration of the loop, we can go right
one step in the figure (towards n) with probability greater than or equal to
half and we can move left (towards 0) with probability, less than or equal to
half.

Figure 2.1: At each loop iteration,
the algorithm walks one step to-
wards the left or right with prob-
ability � 1

2 or  1
2 respectively.

The walk given by Equation 3.1 is di�cult to analyse and therefore we
analyse a “pessimistic” version of the above probability distribution. The
equations in this version are approximated by a “Markov chain” as follows
(see also Figure 3.2).

Prob [Xi+1 = n� 1 | Xi = n] = 1

Prob [Xi+1 = k � 1 | Xi = k] =
1

2
, 8k, where 0 < k < n

Prob [Xi+1 = k + 1 | Xi = k] =
1

2
, 8k, where 0 < k < n

(2.2)

Note that, in the former setting, the probability of going left at any point
was greater or equal to in the latter setting. Therefore, the probability of
reaching 0 in m number of steps is greater in the former than in the latter.
Therefore, the expected number of steps to reach 0 from k using these set of
equations is greater than what we had before. We will give an upperbound
for these sets of equations.

9

2. Discrete probability distributions

Figure 2.2: Markov Chain approxi-
mation: At each loop iteration, the
algorithm walks one step towards
the left or right with probability ex-
actly 1

2 . This is a worst case sce-
nario for our algorithm.

Let k be such that 0  k  n. We will denote by Zk, the random
variable representing the number of steps from k to 0. We are interested in
the expected value of Zn (denoted by E[Zn]). The Equations 3.2 gives us the
following

E[Z0] = 0

E[Zn] = 1 + E[Zn�1]

8 0 < k < n, E[Zk] =
1

2
(1 + E[Zk�1]) +

1

2
(1 + E[Zk+1)]

= 1 +
1

2
(E[Zk�1] + E[Zk+1])

(2.3)

This contains n + 1 equations on n + 1 variables. The following claim
holds for equations 3.3.

Lemma 2.2. For all k, where 0  k < n we have E[Zk] = 2nk � k
2

Proof. The proof is by induction on k. It is easy to observe that the claim
holds for the base case k = 0. Let us assume it true for some k and show
that it holds for k + 1. We know the following

E[Zk] = 1 +
1

2
(E[Zk�1] + E[Zk+1])

Therefore, the lemma holds due to the following analysis

E[Zk+1] = 2
�
E[Zk]� 1

�
� E[Zk�1]

= 2(2nk � k
2 � 1)�

�
2n(k � 1)� (k � 1)2

�

= 2(2nk � k
2 � 1)�

�
2nk � 2n� (k2 � 2k + 1)

�

= 2nk � k
2 � 1 + 2n� 2k

= 2n(k + 1)� (k + 1)2

From this, we get that

E[Zn] = 1 + 2n(n� 1)� (n� 1)2 = n
2

10

Randomized Algorithms 2.5. 3-CNF

In other words, the expected number of steps required from any position k

to 0 is less than or equal to n
2. This proves the following.

Lemma 2.3. If a 2-CNF formula is satisfiable, then the algorithm 3 outputs
SAT in an expected running time of at most n2.

With the above lemma, we can derive a “good” value for m. We show
that, if m = 2n2

t, then the algorithm answers correctly with a probability
greater than or equal to (1� 1

2t).

Theorem 2.4. Let m = 2n2
t. Then Algorithm 3. fails with probability less

than or equal to 1
2t .

Proof. We know that if the formula is not satisfiable, the algorithm does not
fail. So, let us assume that the formula is satisfiable. Let Z be the random
variable representing the number of steps taken to output SAT. Applying
Markov’s inequality to the above lemma gives us

Prob [Z � 2n2]  1

2

Let us consider our algorithm as running t loops with each loop running 2n2

times. Then, an inside loop fails with probability less than or equal to half.
Hence, the probability of the algorithm failing t times is given by the union
bound as

Prob [algorithm fails]  1

2t

2.5 3-CNF

Our algorithm will be a modification of the 2-CNF algorithm. What could
go wrong if we applied the same algorithm for the 3-CNF case. The Markov
chain for a 3-CNF formula is given in Figure 3.3. Exercise ?? shows that the
expected running time for this algorithm is O(2n). This is not good enough,
since even going through all possible solutions takes only this much time.

We modify our algorithm as follows.
As in the 2-CNF algorithm, we know that if the formula is unsatisfiable,

then the algorithm will return UNSAT. Let us now calculate the expected
running time of the algorithm if m = 1 and assuming the formula is sat-
isfiable. Like in the previous analysis, let S be the satisfying assignment.
Let us now consider the run of an outer loop. We start from an arbitrary
assignment for ↵. For the i

th iteration of the inner loop we denote by Ai

11

2. Discrete probability distributions

Figure 2.3: Markov Chain approxi-
mation: At each loop iteration, the
algorithm walks one step towards
the left or right with probability 1

3 ,
and 2

3 respectively. This is a worst
case scenario for our algorithm.

Algorithm 4 3-CNF Satisfiability

Input: A 3-CNF formula ↵

Output: ↵ is satisfiable or not.
1: for m steps do
2: Start with an arbitrary truth assignment.
3: for 3n steps do
4: if assignment makes ↵ true then

5: Return SAT
6: end if

7: Choose a clause not satisfiable.
8: Choose uniformly at random one of the propositions in the clause

and change its assignment.
9: end for

10: end for

11: Return UNSAT.

the assignment at the beginning of the inner loop. We want to bound the
probability that the 3n steps of the inner loop does not identify the satisfying
assignment. Let us assume that the after the initial arbitrary assignment, k
many propositions are wrongly assigned. Let us denote by qk the probabil-
ity that we reach a satisfying assignment within 3n steps of the inner loop.
That is, the probability of reaching 0 from k by doing a random walk on the
Markov Chain given in Figure 3.3. Note that, in the special case of k = 0,
we have q0 = 1. For a general k > 0, there is no bound on the number of left
or right moves required to reach 0. Let us consider, a special case when the
number of right moves is k and the number of left moves is 2k. Clearly qk is
greater than the probability of this happening. Thus

qk �
✓
3k

k

◆�1
3

�2k�2
3

�k

Stirling’s formula gives that there are constants c1 and c2 such that for
any n > 0, we have c1

p
n
�
n
e

�n  n!  c2
p
n
�
n
e

�n
. This can now be used to

12

Randomized Algorithms 2.5. 3-CNF

find a better bound for qk.

qk �
3k!

k!
2k!

�1
3

�2k�2
3

�k

�
c1

p
3k(3ke)

3k

c2

p
k(ke)

kc2

p
2k(2ke)

2k

�1
3

�2k�2
3

�k

� c
1p
k

1

2k
, for a constant c

We now have a bound on qk. Let us now calculate the probability q

that we find the satisfying assignment given that we start from a random
assignment. Then,

q =
nX

k=0

Prob [assignment to exactly k propositions are di↵erent from that of S]⇥ qk

� 1

2n
+

nX

k=1

✓
n

k

◆
1

2n
cp
k

1

2k

� 1

2n
cp
n
+

nX

k=1

✓
n

k

◆
1

2n
cp
n

1

2k

=
cp
n2n

nX

k=0

✓
n

k

◆
1

2k

=
cp
n2n

(1 +
1

2
)n (using the expansion for (1 +

1

2
)n)

=
cp
n

�3
4

�n

Thus the probability of success starting from an arbitrary assignment and
walking 3n steps is � cp

n

�
3
4

�n
. Thus the expected running time of the outer

loop for success is given by

O(
p
n
�4
3

�n
)

Let a be denoted by this number. Thus the total number of steps of the
algorithm is a⇥ 3n. We will now show that taking m = 2at will ensure that
the probability of failure of our algorithm is less than or equal to 1

2t .

Theorem 2.5. Let a =
p
n
c

�
4
3

�n
) and m = 2at. Then the running time of

Algorithm 4. is O(n
3
2

�
4
3

�n
) and the probability of failure is less than or equal

to 1
2t .

13

2. Discrete probability distributions

Proof. The running time of the algorithm is 3n⇥
p
n
c

�
4
3

�n
) = O(n

3
2

�
4
3

�n
). The

algorithm will fail only if the formula is satisfiable. Let Z be the random
variable denoting the number of outer loops required for finding the satisfying
assignments. Using Markov’s inequality we can show that

Prob [Z � 2a]  1

2

Let us again consider that we are running the algorithm t times and each
time we are running the outer loop for 2a times. Thus the probability of
failure for all the t times is given by the union bound by

Prob [algorithm fails]  1

2t

14

