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Abstract. We look at the ellipsoid algorithm for linear programming. The ellipsoid method, proposed
by Khachiyan, is the first polynomial time algorithm for linear programming.
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1 The Ellipsoid

1.1 Introduction

A two dimensional ellipse is the set of all points
(
x1 x2

)
that satisfy the condition:

x21
a21

+
x22
a22
≤ 1

The standard definition is an equation. We want the interior region also as part of the ellipse
and therefore we have a less than or equal to relation. We can rewrite the above definition
using a matrix notation.{(

x1 x2
)
|
(
x1 x2

)( 1
a21

0

0 1
a22

)(
x1
x2

)
≤ 1
}

The equation and matrix notation for an n-dimensional ellipse or an ellipsoid is of the form:

x21
a21

+
x22
a22

+ · · ·+ x2n
a2n
≤ 1

{(
x1 x2 . . . xn

)
|
(
x1 x2 . . . xn

)


1
a21

0 . . . 0

0 1
a22

. . . 0

0 0 . . . 1
a2n



x1
x2
.
.
xn

 ≤ 1
}



In other words, we see that a diagonal matrix with positive entries in the diagonal defines
an ellipsoid. Therefore we can say an ellipsoid satisfies the following condition

xTΣx ≤ 1 (where Σ is a diagonal matrix with +ve entries)

This definition of an ellipsoid will be further extended in this section.

1.2 Symmetric positive definite matrices

We further develop the theory of ellipsoids using linear algebra. Consider an n-dimensional
sphere of radius one (denoted by Sn). It satisfies the equation

n∑
i=1

x2i ≤ 1 which is equivalent to xTx ≤ 1 (where x = (x1 x2 . . . xn))

Let Σ ∈ Rn×n be a full diagonal matrix. We define the “action” of Σ on Sn to be all
y = Σx where x ∈ Sn.

Σ(Sn) ::=
{
y = Σx | x ∈ Sn

}
We show that this set is an ellipsoid. Since x ∈ Sn, we have xTx ≤ 1 and therefore:

(Σ−1y)
T
(Σ−1y) ≤ 1 which is equivalent to yT(Σ−1)2y ≤ 1

Let us consider an example.

Example 1. Consider the diagonal matrix Σ given below.

Σ =

(
2 0
0 1

2

)
The matrix Σ acts on Sn to give an ellipsoid whose “radius” on the x-axis is two and that
on the y-axis is 1

2
. See Fig. 1.

Fig. 1. On the left is the sphere of radius one centered at the origin (denoted by Sn). On the right is the ellipsoid
Σ(Sn) whose center is the origin. The x-axis is two (twice the radius of the unit sphere) and the y-axis is half.
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The ellipsoids we have seen till now are special. The coordinate axes are the “principal
axes” of the ellipsoid. We want a definition where the axes of the ellipsoids need not corre-
spond to the coordinate axes. Imagine a rotation matrix (an orthonormal matrix) Q acting
on Sn followed by the product of a diagonal matrix and the inverse of Q. Thus, the matrix Q
rotates a point in Sn to the x-axis. The diagonal matrix scales the point. The inverse matrix
rotates the vector back to its original direction. In short, we get an ellipsoid whose principal
axes are different from the cartesian coordinate axes. That is, let A = Q−1ΣQ and imagine
A acting on Sn. Then

A(Sn) ::= Q−1ΣQ(Sn) =
{
y = QTΣQx | x ∈ Sn

}
The last equality follows from the fact that Q is an orthonormal matrix (columns have unit
norm and are perpendicular to each other).

What is the equation of a general ellipsoid? Since xTx ≤ 1 we have that

(QTΣQ)−1y)
T
((QTΣQ)−1y) ≤ 1 equivalent to yT

(
QT(Σ−1)2Q

)
y ≤ 1

Here the last equality follows from the fact that Q−1 = QT and (Σ−1)
T

= Σ−1.

Fig. 2. The axes are
at 45◦.

Example 2. The matrix Q (resp. QT) given below rotates a vector in xy-
plane clockwise (resp. counterclockwise) by 45 degrees. Thus the matrix
A rotates a vector by 45 degrees, scales, and rotates back the points.

A =

counterclockwise rotation QT︷ ︸︸ ︷(
1√
2
− 1√

2
1√
2

1√
2

) (
2 0
0 1

2

)
︸ ︷︷ ︸

+ve diagonal Σ

clockwise rotation Q︷ ︸︸ ︷(
1√
2

1√
2

− 1√
2

1√
2

)

The matrix A acts on Sn giving an ellipsoid E whose principal axes are
45 degrees. See Fig. 2.

E = A(Sn) = QTΣQ(Sn) =
{
y | yT

(
QT(Σ−1)2Q

)
y ≤ 1

}
Ellipsoids are defined using special matrices of the form QTΛQ where

Q is an orthonormal matrix and Λ is a diagonal matrix with all the diagonal entries being
positive (note the square of the diagonal matrix Σ−1 in our formulation). Such matrices have
a name: symmetric positive definite matrices. We will call it spd in short.

Definition 1 (symmetric positive definite matrix (spd)). M is an spd if M = QTΛQ
where Q is an orthonormal matrix and Λ is a diagonal matrix with positive entries in the
diagonal.

Theorem 1. Let M = QTΛQ be an spd. The following properties are true.

1. full rank — Proof. M is a product of 3 full rank matrices. ut
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2. symmetric — Proof. by definition. ut
3. M−1 is an spd — Proof. (QTΛQ)−1 = QTΛ−1Q is an spd. ut
4. M2 is an spd — Proof. (QTΛQ) (QTΛQ) = QTΛ2Q is an spd. ut
5.
√
M is an spd — Proof.

√
M = QT

√
ΛQ is an spd. ut

6. M = ATA for a matrix A — Proof. take A = QT
√
ΛQ. ut

7. If N = ATA for a full rank matrix A. Then N is an spd. — Proof. Follows from the fact
that any real symmetric matrix B can be diagonalized into B = QTΣQ for an orthonormal
Q and diagonal Σ [4]. ut

8. detM = detΛ = product of the diagonal elements.
9. The eigen values of M are the diagonal elements of Λ.

1.3 The general ellipsoid

Let B be an spd. Then B represents the following ellipsoid.

ell(B) ::=
√
B(Sn) = {x | xTB−1x ≤ 1}

We now make the final generalization. All the ellipsoids we saw till now have their center
at the origin. We want to introduce ellipsoids whose center can be anywhere.

Definition 2 (ellipsoid). The ellipsoid defined by an spd B at center c is

ell(B, c) ::=
{

x | (x− c)TB−1(x− c) ≤ 1
}

In this notation, the sphere of unit radius centered at the origin is: Sn = ell(I,0) where
I ∈ Rn×n is the identity matrix. The sphere of radius r centered at origin is ell(r2I,0).

We are interested in the volume of an ellipsoid. The following general fact about matrices
acting on convex regions is useful.

Lemma 1. Let D be any convex region and A a full rank matrix. Then

V ol(A(D)) = | detA| V ol(D)

The volume of an ellipsoid is given as follows.

Theorem 2. The volume of an ellipsoid defined by spd B and center c is

V ol(ell(B, c)) = det(
√
B) V ol(Sn)

The volume of a sphere of radius r is rn times the volume of a unit sphere.

V ol(ell(r2I,0)) = rn V ol(Sn)

Proof. Consider the ellipsoid ell(B, c). We can assume the center to be the origin without
loss of generality. Therefore ell(B,0) =

√
B(Sn). From Lemma 1 it follows that V ol(E) =

det(
√
B) V ol(Sn). ut
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Another important theorem for us is

Theorem 3 (closure under linear transform). Let A be a full rank matrix. If E is an
ellipsoid, then A(E) is an ellipsoid. Its volume is | detA| V ol(E).

In particular, if E = ell(B,0), then A(E) = ell(ABAT,0).

Proof. Let E =
√
B(Sn) for a psd B. Therefore, A(E) = A

√
B(Sn). Consider an x ∈ Sn and

let y = A
√
Bx. Since xTx ≤ 1 we have that

((A
√
B)−1y)

T
((A
√
B)−1y) ≤ 1 iff yT ((A

√
B)−1)

T
(A
√
B)−1) y ≤ 1

Take M = (A
√
B)−1. Since M is a full rank matrix, MTM is an spd (from Theorem 1).

Therefore we have that A(E) is an ellipsoid.
From Lemma 1 it follows that the V ol(A(E)) = | detA| V ol(E). ut

1.4 Half of an ellipsoid

Fig. 3. The ellipsoid ell(B, b) contains ell(I,0) ∩ {x | x1 ≤ 0} where ell(I,0) is Sn. Note that the center of the
ellipsoid is slightly shifted in the x-axis, whereas it is zero for all other axes. The width of the ellipsoid in the x-axis
is smaller than one, whereas the width in the other axes are greater than one.

Consider an ellipsoid E. A plane passing through the center of E cuts the ellipsoid into
half. Our aim is to construct a “small” ellipsoid which covers one half of E. We will first do
this for the special ellipsoid Sn and the half plane x1 ≤ 0. That is, we want an ellipsoid that
includes all the points in

{x | xTx ≤ 1} ∩ {x | x1 ≤ 0}
We show that the ellipsoid ell(B, b) where b =

(
−1/n+ 1 0 0 . . . 0

)
and

B =


n2

(n+1)2
0 0 . . . 0

0 n2

(n2−1) 0 . . . 0

0 0 n2

(n2−1) . . . 0

0 0 0 . . . n2

(n2−1)


satisfies the properties we want. See Fig. 3. The proof of the theorem is from [3, Chapter 8].
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Theorem 4. Let E = ell(B, b). Then

1. Sn intersection the half plane x1 ≤ 0 is in E. That is,

{x | xTx ≤ 1} ∩ {x | x1 ≤ 0} ⊆ ell(B, b)

2. Volume of E is such that

V ol(ell(B, b))

V ol(Sn)
= det

√
B <

(1

e

) 1
2(n+1)

Proof. (1). Consider an x where xTx ≤ 1 and x1 ≤ 0. We show that x ∈ ell(B, b) or(
x− b

)T
B−1

(
x− b

)
≤ 1

Substitute b and B into the equation.

(
x1 + 1

n+1
x2 . . . xn

)
(n+1)2

n2 0 . . . 0

0 (n2−1)
n2 . . . 0

0 0 . . . (n2−1)
n2



x1 + 1

n+1

x2
. . .
xn

 ≤ 1

⇐⇒ (n+ 1)2

n2

(
x1 +

1

n+ 1

)2
+
n2 − 1

n2

n∑
i=2

x2i ≤ 1

⇐⇒ (n+ 1)2

n2

(
x1 +

1

n+ 1

)2
− n2 − 1

n2
x21 +

n2 − 1

n2
xTx ≤ 1

⇐⇒ (n+ 1)2

n2

(
x21 +

2x1
n+ 1

+
1

(n+ 1)2

)
− n2 − 1

n2
x21 +

n2 − 1

n2
xTx ≤ 1

⇐⇒ (2n+ 2)

n2
x21 +

2(n+ 1)

n2
x1 +

1

n2
+

n2 − 1

n2
xTx ≤ 1

⇐⇒ (2n+ 2)

n2

(
x21 + x1

)
+

1

n2
+

n2 − 1

n2
xTx ≤ 1

⇐ 1

n2
+

n2 − 1

n2
xTx ≤ 1

(
∵ x1 ∈ [−1, 0] since xTx ≤ 1 and x1 ≤ 0

)
⇐ 1

n2
+

n2 − 1

n2
≤ 1

(
∵ xTx ≤ 1

)
The last inequality is true. Therefore the half ellipsoid is in E.

(2). Our aim is to bound the ratio of volume of E and the unit sphere.

V ol(ell(B, b))

V ol(Sn)
= det

√
B =

n

n+ 1

( n2

n2 − 1

)n−1
2

(from Theorem 2)

=
(
1− 1

n+ 1

) (
1 +

1

n2 − 1

)n−1
2

< e−
1

n+1 e
n−1

2(n2−1) (since 1− x < e−x and 1 + x < ex)

= e−
1

n+1 e
1

2(n+1) = e−
1

2(n+1)

This concludes the proof. ut
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Our next aim is to generalize this construction. We give a smaller ellipsoid F that covers
half of an ellipsoid E = ell(C,0). Moreover, we maintain the ratios of the volume of F and
E as in the above lemma. Let us assume we want an ellipsoid that contains those points x
in E and aTx ≤ 0. The latter is a half-plane passing the center.

Theorem 5 (half ellipsoid). Let E = ell(C, c) and aT(x− c) ≤ 0 be a half plane. Then,
there exists an ellipsoid F = ell(D,d) such that

{x | (x− c)TA−1(x− c) ≤ 1} ∩ {x | aT(x− c) ≤ 0} ⊆ F

and the ratio of volumes is
V ol(F )

V ol(E)
<
(1

e

) 1
2(n+1)

Proof. First consider the ellipsoid E ′ = E− c. Notice that E ′ = ell(C,0) is a shifted version
of E with the center at origin. Then, E ′ =

√
C(Sn) or Sn =

√
C−1(E ′). The latter equality

follows from (
√
C)
−1

=
√
C−1 for an spd. Let R be the rotation matrix which rotates the

half plane aTx ≤ 0 to coincide with the half plane x1 ≤ 0. From Theorem 4 we have an
ellipsoid ell(B, b) such that the ellipsoid

√
BR(Sn) includes the half of R(Sn) that intersects

the plane x1 ≤ 0. We now rotate this ellipsoid by RT followed by the action of matrix
√
C.

This gives an ellipsoid F ′ =
√
CRT

√
BR(Sn) that covers the half aTx ≤ 0 of ellipsoid E ′.

F ′ =
√
CRT

√
BR(Sn)

See Fig. 4. From Theorem 3 and Theorem 4, F ′ = ell(D,d′) where

D =
(√

CRT
√
BR

) (√
CRT

√
BR

)T
=
√
CRTBR

√
C

d′ = (
√
CRT)b

The ellipsoid F ′ is shifted by c and that gives an ellipsoid F = ell(D,d′ + c) that captures
the half ellipsoid of E as required.

Next we show the ratio of volumes is

V ol(F )

V ol(E)
= | det (

√
CRT

√
BR
√
C−1)| (from Theorem 2)

= det (
√
C) det (

√
B) det (

√
C−1) (det(R) = 1 since it is orthonormal)

= det (
√
B) <

(1

e

) 1
2(n+1)

(from Theorem 4)

This concludes the proof. ut

2 Linear program

In this section, we define a linear program. We follow this by introducing two special linear
programs: bounded linear programs and promise linear programs. Any linear program can
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Fig. 4. On the left (in bold) is the ellipsoid E′ = ell(C,0) and the dashed line is aTx ≤ 0. To find the ellipsoid that
includes this half of ellipsoid E′, we go to the sphere Sn (by the action

√
C−1) and a rotation R to bring aTx ≤ 0 to

coincide with half plane x1 ≤ 0. Theorem 4 gives an ellipsoid that covers half of this sphere. We then “reverse” our
action (rotate by RT and multiply by

√
C). This gives us the required ellipsoid F ′.

be reduced in polynomial time to both these special linear programs. In the next section, we
show that the promise linear program is in polynomial time.

A linear program (LP in short) is a linear optimization problem (maximization or mini-
mization). In a max-LP, the input consists of a linear objective function and a set of linear
constraints. The aim is to find a solution that maximizes (or minimizes in a min-LP) the ob-
jective function provided the solution satisfies all the linear constraints. There are poly-time
reductions from a max-LP to a min-LP and vice versa. The standard form of a max-LP is:

Definition 3 (standard LP). Does there exist an x∗ that satisfies the following conditions:

max aTx such that Ax ≤ b, x ≥ 0

Assumption: We assume the matrix A, vectors b and a have integer entries (unless
mentioned otherwise). We use the following notations.
Notation:
1. K is the largest absolute value in the input matrix and vectors.
2. n is the number of variables in the LP.

We say that the LP is feasible if there exists an x∗ that satisfies the equations Ax ≤ b
and x ≥ 0. An important property of standard LP is that if there is an optimal solution
then the optimal value is bounded. Moreover the optimal solution x∗ is also bounded.

Lemma 2 (Chapter 8 of [1]). Consider the standard LP defined above. If there is an opti-
mal solution to the LP then there is a solution x∗ where each xi is bounded by n(nK)n. More-
over the optimal value (objective function value at x∗) is bounded between [−(nK)n

2
, (nK)n

2
].

In the bounded LP problem, the feasibility region is bounded.
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Definition 4 (bounded LP). Does there exist an x such that

Ax ≤ b, x ≥ 0, x ≤ ce (where c ∈ N, and eT =
(
11 · · · 1

)
)

Note that all for any variable xi in the above problem xi ∈ [0, c].
We show that if bounded LP is in poly-time, then any LP is in poly-time.

Lemma 3. If bounded LP is in polynomial time, then standard LP is in polynomial time.

Proof. Let us assume that bounded LP is in polynomial time. Consider an instance of a
standard LP problem.

We first check whether the optimality is unbounded. We create a bounded LP with the
objective function max aTx removed. We replace it by a linear inequality: (nK)n

2 ≤ aTx ≤
(nK)n

3
. We bound the feasibility region by x ≤ (nK)n

3
e. This is an instance of a bounded

LP problem. We call the polynomial-time algorithm to solve this. If it returns yes, it means
the objective value in the standard LP is unbounded. On the other hand, if it returns no,
we need to check whether there is an optimal solution.

To check whether there is an optimal solution, we create another bounded LP instance.
We again take the standard LP instance and remove the objective function. We add the
constraints: x ≤ (nK)n

2
e. We call the polynomial-time algorithm on this new bounded

LP instance. If it returns yes, it means there is an optimal solution to the standard LP.
Otherwise, there is no optimal solution to the standard LP. ut

Our next aim is to reduce the bounded LP problem to the following promise LP problem.
In the promise LP problem, the feasibility region (if it exists) has a reasonable volume.

Definition 5 (promise LP). Does there exist an x such that

Ax ≤ b, x ≥ 0, x ≤ (nK)n
2

e

given the following promise condition: If the LP is feasible, then the feasible region contains
a sphere of radius 1

(nK)n3 .

Fig. 5. The promise LP is con-
structed by relaxing the constraints
in a bounded LP by a small ε.

In the next section, we give an algorithm that answers
the promise LP in polynomial time. Theorem 6 shows that
a bounded LP can be reduced in polynomial time to a promise
LP. The main idea in the reduction is a relaxation of the con-
straints by a small ε as shown in Fig. 5. The proof of the
following theorem is from [1, Chapter 8].

Theorem 6. If the promise LP problem is in polynomial time,
then the bounded LP problem is in polynomial time.

Proof. Note that by changing the inequality (multiplication
by −1), the bounded LP problem given in Definition 4 can be
written as

L1 : Ax ≥ b

9



Consider the modified LP:

L2 : Ax ≥ (b− εe), where ε =
1

2(n+ 1)

( 1

(n+ 1)K

)(n+1)

We first show that L1 is feasible if and only if L2 is feasible. Then we show that L2 is an
instance of the promise LP problem. It is clear that if L1 is feasible then L2 is feasible - if
x∗ is solution to L1 then x∗+ εe is a solution to L2. Let us now consider the other direction.
We prove the contrapositive of this statement: If L1 is not feasible then L2 is not feasible.
Assume L1 is not feasible. Consider the following LP equivalent to L1

min 0Tx such that Ax ≥ b

and its dual

max bTy such that ATy = 0 and y ≥ 0

Since L1 is not feasible and L2 is feasible (y = 0) we have that L2 is unbounded. Therefore
there is a solution (basic feasible solution) y to L2 extended with the additional constraint
bTy = 1. From Lemma 2 we know that

yi ≤ ((n+ 1)K)(n+1) (for all i)

Note that there are n+ 1 constraints rather than n constraints in this dual LP. Since y is a
basic feasible solution, only n+ 1 of the components of y are non-zero and hence.

m∑
i=1

yi ≤ (n+ 1)((n+ 1)K)(n+1)

Therefore,

(b− εe)Ty = bTy − εeTy = 1− ε
m∑
i=1

yi ≥
1

2

Note that for any ŷ = cy where c > 0 we have that (b− εe)Tŷ ≥ c
2
. In other words the

following LP is unbounded.

max (b− εe)Ty such that ATy = 0 and y ≥ 0

and hence its dual (which is equivalent to L2) is infeasible.

min 0Tx such that Ax ≥ b− εe
We have now shown that L1 is feasible if and only if L2 is feasible. We now argue that L2
is an instance of a promise LP problem. For this purpose, we show a sphere of radius 1

(nK)n3

sitting inside the feasible region of L2 (if L2 is feasible).
Let x be such that Ax ≥ b and let y be such that for all j, |yj − xj| ≤ ε/(nK). The ith

component of Ay satisfies the following condition
n∑
j=1

aijyj ≥
n∑
j=1

aijxj −
ε

(nK)

n∑
j=1

|aij| ≥ bi −
ε

nK
nK ≥ bi − ε

Therefore, y satisfies the condition Ay ≥ b− εe. The set of all such y forms a cube of side
ε/(nK). It is easy to see that such a cube contains a sphere of radius 1

(nK)n3 . ut
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3 The Ellipsoid method

In this section, we give a polynomial-time algorithm for the promise LP problem. This
algorithmic strategy, introduced by Khachiyan [2], is called the Ellipsoid method.

Consider the promise LP problem: Does there exist an x such that

Ax ≤ b, x ≥ 0, x ≤ (nK)n
2

e

and, if the LP is feasible, then the feasible region contains a sphere of radius 1

(nK)n
3 .

The Ellipsoid algorithm consists of four main steps.

Step 1: Start with an ellipsoid that contains the feasible region.
Step 2: If the ellipsoid center is feasible return that the LP is feasible.
Step 3: Construct a smaller ellipsoid that includes the entire feasible region. Go to Step
2 if Step 4 is not violated.
Step 4: If the volume of the ellipsoid falls below a threshold, return the LP is not feasible.

We elaborate on each of these steps while arguing correctness.

Step 1: Ellipsoid E0 in-
cludes the feasible region.

Recall the promise LP problem. Every variable xi is bound
by xi ∈ [0, (nK)n

2
]. Therefore a sphere of radius (nK)n

3
cen-

tered at the origin includes the feasible region.

Step 1: The ellipsoid E0 = ell(r2I,0) where r = (nK)n
3

contains the feasible region (if it exists).

We now iteratively build smaller and smaller ellipsoids that
contain the feasible region. Let us assume that the feasible re-
gion is included in the ellipsoid Ei = (B, c). Note that E0

satisfies this condition. We show how to build a smaller ellip-
soid Ei+1 that includes the feasible region if the center of Ei is
not a feasible point.

We first check whether the center c of the ellipsoid Ei is a
feasible point. If it is, we return saying the LP is feasible.

Step 2: If Ac ≤ b and ci ∈ [0, (nK)n
2
] for all i ∈ |c|, return Yes.

If it does not, one of the constraints of the LP is violated. Let the violated constraint
be aTx ≤ b′. Let us take b′ = b + aTc. The violated constraint is therefore equivalent
to aT(x − c) ≤ b. Since this constraint is violated b is a negative number. The halfplane
aT(x − c) ≤ 0 passes through the center c of Ei and also contains all the points satisfying
the constraint aT(x− c) ≤ b. That is,

feasible region of LP ⊆ {x | aT(x− c) ≤ b} ⊆ {x | aT(x− c) ≤ 0}

We apply Theorem 5 to construct an ellipsoid Ei+1 that is smaller than Ei and that covers
the intersection of Ei and the halfplane aT(x − c) ≤ 0. Since the feasible region of LP is
included in Ei we have that Ei+1 contains the feasible region.
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Fig. 6. The halfplane aT(x− c) ≤ 0 includes the feasible region.

Step 3: Theorem 5 constructs the ellipsoid Ei+1 for the violated constraint aT(x−c) ≤ b.

feasible region of LP ⊆ Ei ∩ {x | aT(x− c) ≤ 0} ⊆ Ei+1

We now iterate the process by again checking whether the center of Ei+1 is feasible or not.
If it is not feasible, we build a smaller ellipsoid Ei+2 and continue the iteration. See Fig. 7.

We also need to give a stopping condition in case there is no feasible point. We show
that after N iterations (where N is polynomial in the input size), the volume of the ellipsoid
becomes so small that it cannot contain a sphere of radius 1

(nK)n3 .

After the ith iteration, the volume of Ei+1 is smaller compared to Ei (see Theorem 5).

vol(Ei+1)

vol(Ei)
<
(1

e

) 1
2(n+1)

(for all i ≤ N)

Therefore after N iterations we have

vol(EN)

vol(E0)
=

�����vol(E1)

vol(E0)
×�����vol(E2)

�����vol(E1)
× · · · × vol(EN)

������
vol(EN−1)

<
(1

e

) N
2(n+1)

(1)

Moreover, we know that if the promise LP is feasible the feasible region contains a sphere of
radius 1

(nK)n3 . In other words, if the promise LP is feasible (and since the volume of a sphere

is a constant times its (radius)n).

vol(EN)

vol(E0)
≥
( 1

(nK)n3(nK)n3

)n
>
( 1

nK

)n4

(2)

Therefore, the volume cannot become less than this threshold if the LP is feasible. We stop
the iterations if the ratio of volumes becomes less than this threshold. This can only happen
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Fig. 7. The Ellipsoid method: Iteratively build smaller and smaller ellipsoid until the ellipsoid becomes smaller than
a threshold. At each step of the iteration, check whether the center of the ellipsoid is a feasible point. The center of
the ellipsoid E2 is a feasible point, whereas the centers of ellipsoids E0 and E1 are not.

if the LP is not feasible. Using Eq. (1) and Eq. (2) we can find a bound on N as follows.

vol(EN)

vol(E0)
<
(1

e

) N
2(n+1)

<
( 1

nK

)n4

Taking log on both sides gives us

N

2(n+ 1)
ln(1/e) < n4 ln(1/nK) if and only if

N

2(n+ 1)
> n4 ln(nK)

In other words for any

N > 2(n+ 1)n4 ln(nK)

the ellipsoid EN will not contain a sphere of radius 1

(nK)n3 , and hence the LP is not feasible.

Step 4: Return not feasible if we could not find a feasible point after continuing the
iteration for N = n6 ln(nK) many times.

We summarize the Ellipsoid method in Algorithm 1.
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Algorithm 1 Ellipsoid Algorithm
1: – Input: A Promise LP instance
2: – Output: Yes, if it is feasible; No, otherwise

3: E0 = ell(r2I,0) where radius r = (nK)n
3

.
4: N = n6 ln(nK) – the number of iterations
5: for i = 0 to N do
6: if center of Ei is a feasible point then
7: return Yes. – LP is feasible
8: end if
9: Let aTx ≤ b be the constraint violated by the center.

10: Apply Theorem 5 (the half ellipsoid) on Ei and above constraint.
11: Let Ei+1 be the new ellipsoid.
12: end for
13: return No. – LP is not feasible
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