VAPNIK-CHERVONENKIS THEORY

SREEJITH A V

Thanks to Satyanath Bhat

_

_

CONTENTS

1	Machine learning basics	2
	1.1 Learning tasks	2
		2
	1.3 Bias variance tradeoff	3
2	ERM and uniform convergence	3
	2.1 Empirical risk minimization (ERM)	3
	2.2 Consistency of ERM	4
	2.3 Uniform convergence	5
	2.4 Consistency of ERM iff Uniform convergence	6
	2.5 Uniform convergence for a finite set of hypothesis	7
3	Growth function and VC dimension	8
	3.1 Growth function	8
	3.2 Uniform convergence and growth function	9
	3.3 VC dimension	12
	3.4 Sauer's Lemma and bounds on growth function	13
	3.5 Uniform convergence for bags with a finite VC dimension	15
4	Recap Statistics	16
5	Recap Combinatorics	17

1 MACHINE LEARNING BASICS

In this section, we look at machine learning basics and standard terminology.

1.1 Learning tasks

We are interested in *supervised learning*. In this setting an algorithm learns a concept using a training data that includes both the model features and expected output labels. There are two important supervised learning tasks.

CLASSIFICATION In a *classification* task, the objective of the learning algorithm is to classify the data into finite number of classes. The number of classes can be binary (eg. $\{0, 1\}$ or $\{-1, +1\}$ or $\{M, F\}$) or non-binary depending on the task.

Let us consider a few examples. In the first example of *obese classification*, the task is to classify a person into obese or not based on his/her height and weight. Here, the height and weight are the input features and the two classes are obese or not obese. In the second example of *gender identification*, the task is to identify the gender of a person from his/her height. Another example is that of *face recognition*. The task is to identify a person from his/her picture. This is an example of a non-binary classification task.

Perceptron is an example of a classification algorithm.

REGRESSION The output of a regression task is an integer/real number. Examples of regression: prediction of temperature, prediction of stock value.

1.2 Machine learning terminologies

We list some standard machine learning terminologies.

- 1. *Feature space*: We denote by $\mathcal{X} = \{x_1, x_2, ...\}$ the feature space. Each $x_i \in \mathcal{X}$ is a feature vector (containing multiple features). We do not represent x_i as a vector to keep the notations simplified. In the obese classification example, the feature vector consists of height and weight of a person. In face recognition, the feature vector contains pixel values.
- 2. *Label*: This is the class assigned to an input. In the obese example, a person is labelled obese or not. We will denote the set of labels by \mathcal{Y} . In this writeup, unless otherwise mentioned $\mathcal{Y} = \{0, 1\}$.
- 3. Target distribution: The target D is a probability distribution over X × Y. Consider the example of gender identification we saw above. In this example Y = {M, F} and the input feature is height. Observe that for a particular height there are both males and females. Thus the machine learning algorithm gets its training data from a particular distribution D. Note that the distribution D is unknown to the learning algorithm. The aim of the learning algorithm is to learn D. We are interested in finding Prob [y = 1|x] in a classification algorithm and Exp [y|x] in regression.

We denote by $(x, y) \sim D$ to mean $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ is sampled according to the distribution \mathcal{D} . We extend this to *sampling* an *n* element set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ as $S \sim \mathcal{D}^n$.

4. Classifier or *hypothesis function*: A hypothesis function $h : \mathcal{X} \to \mathcal{Y}$ classifies a feature vector. It will also be called hypothesis.

- 5. *Bag of classifiers*: We fix a set of classifiers $\mathcal{H} = \{h_1, h_2, ...\}$, where each h_i is a hypothesis function.
- 6. *Loss function*: It measures the error in prediction by a learning algorithm. A loss function is a function $f : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. Example loss functions are zero-one loss

$$L_{0-1}(a, y) ::= \begin{cases} 0, \text{ if } a = y \\ 1, \text{ otherwise} \end{cases}$$

and regression loss

$$L_{reg}(a, y) ::= (a - y)^2$$

In this lecture we will fix the range of the loss function to be between zero and one. That is, $L : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, 1]$. Note that the exact function is not important for our discussion.

7. *Training input*: A learning algorithm learns a model from the training set. It will be denoted by $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}.$

1.3 Bias variance tradeoff

Consider the following. Assume we have a dataset of 10 points $\{(x_i, y_i)\}_{i \in [10]}$ that are zeros of a 50th degree polynomial. Consider the following two models (1) train a degree two polynomial model and (2) train a degree 10 polynomial model. Which of the following models will learn the 50th degree polynomial better? It turns out that from 10 points, a 10 degree polynomial has lots of flexibility and it can end up being far away from the 50th degree polynomial. On the other hand, the two degree polynomial has less flexibility. Therefore, even though a 10 degree polynomial models the input data points perfectly, it is actually not a very good model.

The above discussion is called as the bias variance tradeoff.

- 1. Learn the input data accurately requires a higher model complexity. The error in input learning error is called bias error. Underfitting can lead to larger bias error.
- 2. Generalization, or fit the target accurately requires a lower model complexity. The error in target data is called variance error. Overfitting can lead to larger variance error.

2 ERM AND UNIFORM CONVERGENCE

2.1 Empirical risk minimization (ERM)

The *risk* of a hypothesis $h \in \mathcal{H}$ is defined with respect to \mathcal{D} as follows

$$\mathbf{R}(h) = \exp_{(x_i, y_i) \sim \mathcal{D}} \left[\mathbf{L}(h(x_i), y_i) \right] = \int \mathbf{L}(h(x_i), y_i)) \, d\mathsf{Prob} \left[(x_i, y_i) \sim \mathcal{D} \right]$$

Note that risk is defined with respect to the original distribution \mathcal{D} which we do not know. Once risk is defined, we can define the "best classifier" or the hypothesis that has the least risk.

$$\mathbf{h}^* = \arg\min_{h\in\mathcal{H}} \mathbf{R}(h)$$

A learning algorithm learns a hypothesis by looking at only a finite number of samples. Let us assume $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is the input to the learning algorithm. For a hypothesis

 $h \in \mathcal{H}$, we define the *empirical risk* as

$$\mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) = \frac{1}{|\mathsf{S}|} \sum_{(x_i, y_i) \in \mathsf{S}} \mathsf{L}(h(x_i), y_i)$$

Based on this input S an algorithm can at the most find the hypothesis that minimizes the empirical risk.

$$\mathbf{h}_{\mathsf{S}}^{\mathsf{erm}} = \operatorname*{arg\,min}_{h \in \mathcal{H}} \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h)$$

This principle is called *empirical risk minimization* (ERM).

We now look at couple of properties of risk and empirical risk. These properties will be useful in the proofs. The first remark follows easily from the definition of h_s^{erm} and h^* .

2.1 Remark. $R_S^{erm}(h_S^{erm}) \le R_S^{erm}(h^*)$ and $R(h^*) \le R(h_S^{erm})$.

The next remark follows from the fact that $L(h(x), y) \in [0, 1], \forall (x, y) \in \mathcal{D}$.

2.2 Remark. For all $h \in \mathcal{H}$ and $S \subseteq \mathcal{X} \times \mathcal{Y}$, $\mathbb{R}_{S}^{erm}(h) \in [0, 1]$ and $\mathbb{R}(h) \in [0, 1]$.

The aim of a learning algorithm is to find h^* , the hypothesis with least risk. But, the learning algorithm can only see the input sample and the best it can do is find h_S^{erm} , the hypothesis with the least empirical risk. What is the relationship between h_S^{erm} and h^* ? Only if h_S^{erm} is "close" to h^* can we say that the concept has been learned. Note also that we are not worried about the algorithmic complexity of learning h_S^{erm} .

2.2 Consistency of ERM

Our aim is to ensure that h_s^{erm} is either same as or at least close to h^* . It is natural to think that the more the samples you collect (or larger the set S is) the better chance of h_s^{erm} being close to h^* . We say that h_s^{erm} is ϵ -close to h^* if

$$\left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(\mathbf{h}_{\mathsf{S}}^{\mathsf{erm}}) - \mathbf{R}(\mathbf{h}^{*}) \right| \leq \epsilon$$

How large should our sample set S be for h_s^{erm} to be ϵ -close to h^* ? This is captured by the property on \mathcal{H} called consistency of ERM.

2.3 DEFINITION (*consistency of ERM*). We say that \mathcal{H} satisfies consistency of ERM over \mathcal{D} if there is a function $\mathcal{N}_{erm}^{\mathcal{D}}$: $(0, 1) \times (0, 1) \rightarrow \mathbb{N}$ such that for all $\epsilon, \delta \in (0, 1)$ and for all $n \geq \mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ the following holds:

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\left| R_{S}^{erm}(h_{S}^{erm}) - R(h^{*}) \right| > \epsilon \right] \quad < \quad \delta$$

We also say that \mathcal{H} satisfies consistency of ERM if there is a function \mathcal{N}_{erm} : $(0, 1) \times (0, 1) \rightarrow \mathbb{N}$ such that for all distributions \mathcal{D} and for all $\epsilon, \delta \in (0, 1)$, $\mathcal{N}_{erm}(\epsilon, \delta) \geq \mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$.

In the above definition, the function $\mathcal{N}_{erm}^{\mathcal{D}}$ is called the consistency of ERM bound with respect to distribution \mathcal{D} . Similarly, the function \mathcal{N}_{erm} is called the consistency of ERM bound.

Let us try to understand the above definition. Consider a set $S \sim D^n$ of cardinality *n* where each $x_i \in S$ is drawn iid (independent and identically distributed) from the distribution D. We will be "happy" if we can find an h_s^{erm} such that the empirical risk wrt to h_s^{erm} is ϵ -close to the least possible risk $R(h^*)$. In other words, $|R_s^{erm}(h_s^{erm}) - R(h^*)| \le \epsilon$. This may not be always possible, since the sample set S might be skewed. If we are really unlucky the set S picked iid can all turn out to be of class 0. Therefore, we can only "probabilistically" hope to get a good classification hypothesis. In other words, we want that with a high probability (of at least $1 - \delta$) the sampled set S gives us an h_s^{erm} that is ϵ -close to h^* . To summarize, we are interested in identifying a hypothesis that gives *low error with high probability* or

$$\Pr_{S \sim \mathcal{D}^n} \left[\left| R_{\mathsf{S}}^{\mathsf{erm}}(h_{\mathsf{S}}^{\mathsf{erm}}) - R(h^*) \right| \le \varepsilon \right] \quad \ge \quad 1 - \delta$$

Note that Definition 2.3 talks about identifying a hypothesis that gives *high error with low probability*. The two notions are the same.

The number $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ or the consistency of ERM bound wrt \mathcal{D} , depends only on ϵ , δ and \mathcal{D} . We know that if the sample S is a singleton set, we are highly unlikely to get a hypothesis h_{s}^{erm} to our liking. As the size of S increases we expect to get closer and closer to the best h^{*} . Definition 2.3 says that for any ϵ and δ there exists a large enough $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ such that an iid sample S of cardinality at least $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ gives an h_{s}^{erm} that is ϵ -close to h^{*} with high probability. We conclude by observing that if such an $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ exist, then an S of any size $n \geq \mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta)$ sampled iid also gives us a good enough h_{s}^{erm} .

The final piece in the definition is $\mathcal{N}_{erm}(\epsilon, \delta)$ or the consistency of ERM bound. This is a *distribution free* bound. An \mathcal{H} satisfy consistency of ERM if no matter what the distribution \mathcal{D} is, if we sample an iid S of size at least $\mathcal{N}_{erm}(\epsilon, \delta)$, then we will get an h_{s}^{erm} that is ϵ -close to h^{*} with high probability. Note that we will be interested in the distribution free bound since a machine learning algorithm does not apriori know the distribution \mathcal{D} .

Do all hypothesis class \mathcal{H} satisfy consistency of ERM? Is there an \mathcal{H} that satisfy consistency of ERM? These are questions we answer in this writeup.

2.3 Uniform convergence

We will now look at uniform convergence which is a necessary and sufficient condition for \mathcal{H} to satisfy consistency of ERM.

2.4 DEFINITION (*uniform convergence*). We say that \mathcal{H} satisfies uniform convergence over distribution \mathcal{D} if there is a function $\mathcal{N}_{uc}^{\mathcal{D}}$: $(0, 1) \times (0, 1) \rightarrow \mathbb{N}$ such that for all $\epsilon, \delta \in (0, 1)$ and for all $n \geq \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon, \delta)$ the following holds:

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| \mathbf{R}_{S}^{erm}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

We also say that \mathcal{H} satisfies uniform convergence if there is a function \mathcal{N}_{uc} : $(0, 1) \times (0, 1) \rightarrow \mathbb{N}$ such that for all distribution \mathcal{D} and for all $\epsilon, \delta \in (0, 1), \mathcal{N}_{uc}(\epsilon, \delta) \geq \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon, \delta)$.

Here, "sup R" for a set $R \subseteq \mathbb{R}$ is the supremum of R. The function \mathcal{N}_{uc} (resp. $\mathcal{N}_{uc}^{\mathcal{D}}$) is called the uniform convergence bound (resp. for \mathcal{D}).

Let us now try to understand the above definition. Recall the use of ϵ and δ in the definition of consistency of ERM. Let $S \sim D^n$ be a set of cardinality *n*. We say that the set S is ϵ -bad if there exists a hypothesis $h \in \mathcal{H}$ such that $|\mathbb{R}_{S}^{erm}(h) - \mathbb{R}(h)| > \epsilon$. In other words, for an ϵ -bad S the "worst" hypothesis *h* gives an empirical error $\mathbb{R}_{S}^{erm}(h)$ that is not ϵ -close to the risk $\mathbb{R}(h)$.

(definition) S is
$$\epsilon$$
-bad if $\exists h \in \mathcal{H}$ such that $|\mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathbf{R}(h)| > \epsilon$

Uniform convergence says that the probability of picking an ϵ -bad S is small (less than δ).

To summarize, we say that a hypothesis bag \mathcal{H} satisfies the uniform convergence with respect to a distribution \mathcal{D} if for any ϵ and δ there exists an $N = \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon, \delta)$ such that the probability of an ϵ -bad S of size at least N picked iid from distribution \mathcal{D} is less than δ .

To get a better understanding of uniform convergence, let us restate our discussion. We say that the set S is ϵ -good if for all $h \in \mathcal{H}$ the empirical risk $\mathbb{R}_{s}^{erm}(h)$ is ϵ -close to risk $\mathbb{R}(h)$. Uniform convergence says that for any ϵ and δ there is an N such that the probability of picking an ϵ -good iid sample S from distribution \mathcal{D} is high (greater than $1 - \delta$).

The uniform convergence bound N_{uc} is a *distribution free* bound. That is no matter what the distribution is, if we pick an iid sample S of size at least $N_{uc}(\epsilon, \delta)$, then the probability of picking an ϵ -bad S is less than δ .

The following observation will be useful in understanding some of the proofs.

2.5 REMARK. Let $S \subseteq \mathcal{X} \times \mathcal{Y}$ be an arbitrary set. Then

S is
$$\epsilon$$
-bad iff $\exists h \in \mathcal{H} | \mathbb{R}_{s}^{erm}(h) - \mathbb{R}(h) | > \epsilon$ iff $\sup_{h \in \mathcal{H}} | \mathbb{R}_{s}^{erm}(h) - \mathbb{R}(h) | > \epsilon$

Next we observe that uniform convergence is as strong as weak law of large numbers.

2.6 LEMMA (uniform convergence \Rightarrow weak law of large numbers). Let \mathcal{H} satisfy uniform convergence for distribution \mathcal{D} . Then for all ϵ , δ in (0, 1) and all $h \in \mathcal{H}$ there exists an N such that

$$\operatorname{Prob}_{S \sim \mathcal{D}^n} \left[\left| \operatorname{R}_{S}^{\operatorname{erm}}(h) - \operatorname{R}(h) \right| > \epsilon \right] < \delta \qquad (\forall n \ge N)$$

Proof. Let us assume \mathcal{H} satisfies uniform convergence for distribution \mathcal{D} . Let ϵ and δ be as given in the statement of the lemma. Let $N = \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon, \delta)$. Consider an $h \in \mathcal{H}$. We show that for all $n \ge N$ the statement of the lemma is true.

Consider a finite set $S \sim D^n$ of cardinality $n \ge N$. It follows from definition that if $|\mathbb{R}_{S}^{erm}(h) - \mathbb{R}(h)| > \epsilon$ then S is ϵ -bad. In other words for all $n \ge N$,

$$\begin{aligned} \Pr_{S \sim \mathcal{D}^{n}} \left[\left| \mathbb{R}_{S}^{\mathsf{erm}}(h) - \mathbb{R}(h) \right| &> \epsilon \right] &\leq \Pr_{S \sim \mathcal{D}^{n}} \left[S \text{ is } \epsilon \text{-bad} \right] \\ &= \Pr_{S \sim \mathcal{D}^{n}} \left[\exists \widehat{h} \in \mathcal{H} \left| \mathbb{R}_{S}^{\mathsf{erm}}(\widehat{h}) - \mathbb{R}(\widehat{h}) \right| &> \epsilon \right] &< \delta \end{aligned}$$

The latter inequality follows from the fact that \mathcal{H} satisfies uniform convergence. This concludes the proof of the lemma.

2.4 Consistency of ERM iff Uniform convergence

We first show that if \mathcal{H} satisfies uniform convergence then it satisfies consistency of ERM.

2.7 LEMMA (uniform convergence \Rightarrow consistency of ERM). Let \mathcal{H} satisfy uniform convergence over \mathcal{D} . Then \mathcal{H} satisfies consistency of ERM over \mathcal{D} . Moreover $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta) = \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon/2, \delta)$.

Proof. Let \mathcal{H} satisfy uniform convergence over \mathcal{D} . Our aim is to give the consistency of ERM bound $\mathcal{N}_{erm}^{\mathcal{D}}$. Consider an arbitrary $\epsilon, \delta \in (0, 1)$. We show that $\mathcal{N}_{erm}^{\mathcal{D}}(\epsilon, \delta) = \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon/2, \delta)$ satisfies the conditions of consistency of ERM. Pick any $n \geq \mathcal{N}_{uc}^{\mathcal{D}}(\epsilon/2, \delta)$. Since \mathcal{H} satisfies uniform convergence over \mathcal{D} :

$$\operatorname{Prob}_{S\sim\mathcal{D}^{n}}\left[\sup_{h\in\mathcal{H}}\left|\operatorname{R}_{S}^{\operatorname{erm}}(h)-\operatorname{R}(h)\right|>\epsilon/2\right] < \delta$$

Consider an $S \sim D^n$ and the following equation

$$\begin{split} R^{\text{erm}}_{\text{S}}(h^{\text{erm}}_{\text{S}}) - R(h^*) &= R(h^{\text{erm}}_{\text{S}}) - R^{\text{erm}}_{\text{S}}(h^{\text{erm}}_{\text{S}}) \\ &+ R^{\text{erm}}_{\text{S}}(h^{\text{erm}}_{\text{S}}) - R^{\text{erm}}_{\text{S}}(h^*) \\ &+ R^{\text{erm}}_{\text{S}}(h^*) - R(h^*) \end{split}$$

From the definition of h_{S}^{erm} we have that $R_{S}^{erm}(h_{S}^{erm}) - R_{S}^{erm}(h^{*}) \leq 0$. Therefore,

$$R^{\mathsf{erm}}_{\mathsf{S}}(h^{\mathsf{erm}}_{\mathsf{S}}) - R(h^*) \quad \leq \quad R(h^{\mathsf{erm}}_{\mathsf{S}}) - R^{\mathsf{erm}}_{\mathsf{S}}(h^{\mathsf{erm}}_{\mathsf{S}}) \quad + \quad R^{\mathsf{erm}}_{\mathsf{S}}(h^*) - R(h^*)$$

Since the left hand side is a non negative number

$$\left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(\mathbf{h}_{\mathsf{S}}^{\mathsf{erm}}) - \mathbf{R}(\mathbf{h}^{*}) \right| \leq 2 \sup_{h \in \mathcal{H}} \left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathbf{R}(h) \right|$$

Consistency of ERM now follows from the fact that

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\left| R_{S}^{\text{erm}}(\mathbf{h}_{S}^{\text{erm}}) - R(\mathbf{h}^{*}) \right| > \epsilon \right] \leq \Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{\text{erm}}(h) - R(h) \right| > \epsilon/2 \right] < \delta$$

This concludes the proof.

The other direction of the above lemma, that is consistency of ERM implies uniform convergence, was shown by Vapnik. We skip the non-trivial proof.

2.8 LEMMA (consistency of ERM \Rightarrow uniform convergence). Let \mathcal{H} satisfy consistency of ERM over \mathcal{D} . Then \mathcal{H} satisfies uniform convergence over \mathcal{D} .

2.5 Uniform convergence for a finite set of hypothesis

We show that uniform convergence holds for a finite bag of classifiers \mathcal{H} .

2.9 LEMMA. Distribution free uniform convergence holds for a finite set of hypothesis *H*. Furthermore, uniform convergence holds for the following bound:

$$\mathcal{N}_{uc}(\epsilon, \delta) = \frac{1}{2\epsilon^2} \ln \frac{2\mathcal{H}}{\delta}$$

Therefore, consistency of ERM holds for the bound:

$$\mathcal{N}_{\rm erm}(\epsilon, \delta) = \frac{2}{\epsilon^2} \ln \frac{2\mathcal{H}}{\delta}$$

Proof. Consider a finite set \mathcal{H} . Our aim is to show that \mathcal{H} satisfies *distribution free* uniform convergence for the bound given in the statement of lemma. Let ϵ , δ be arbitrary numbers in (0, 1) and \mathcal{D} an arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$. We need to show that for all $n > \mathcal{N}_{uc}(\epsilon, \delta)$,

$$\operatorname{Prob}_{S\sim\mathcal{D}^{n}}\left[\sup_{h\in\mathcal{H}}\left|\operatorname{R}_{S}^{\operatorname{erm}}(h)-\operatorname{R}(h)\right|>\epsilon\right] < \delta$$

Fix an $h \in \mathcal{H}$. We define the random variable X_i for all $i \le n$ as follows: choose a random sample $(x_i, y_i) \sim \mathcal{D}$ and let $X_i = L(h(x_i), y_i)$. Note that $Exp[X_i] = R(h)$ for all $i \le n$. Since the loss function is such that $L(h(x), y) \in [0, 1]$ we have that $0 \le X_i \le 1$ for all $i \le n$. Therefore, we can apply the

Hoeffding bound (regardless of the distribution \mathcal{D}) on the iid random variables X_1, X_2, \dots, X_n .

$$\Pr_{\mathbf{S}\sim\mathcal{D}^{n}}\left[\left|\mathbf{R}_{\mathbf{S}}^{\mathsf{erm}}(h)-\mathbf{R}(h)\right|>\epsilon\right] = \Pr\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbf{R}(h)\right|>\epsilon\right] \leq 2e^{-2n\epsilon^{2}}$$

We now bound the probability of an ϵ -bad set S using union bound. For all distributions \mathcal{D} ,

$$\frac{\operatorname{Prob}_{S\sim\mathcal{D}^{n}}\left[\sup_{h\in\mathcal{H}}\left|\operatorname{R}_{S}^{\operatorname{erm}}(h)-\operatorname{R}(h)\right|>\epsilon\right]}{\leq} \sum_{h\in\mathcal{H}}\operatorname{Prob}_{S\sim\mathcal{D}^{n}}\left[\left|\operatorname{R}_{S}^{\operatorname{erm}}(h)-\operatorname{R}(h)\right|>\epsilon\right]}{\leq} 2|\mathcal{H}|e^{-2n\epsilon^{2}}$$

To make left hand side less than δ we pick *n* large enough so that $2|\mathcal{H}|e^{-2n\epsilon^2} \leq \delta$. For this to happen

$$\ln\left(2|\mathcal{H}|e^{-2n\epsilon^2}\right) \le \ln\delta \quad \text{iff} \quad \ln 2\mathcal{H} - 2n\epsilon^2 \le \ln\delta$$

In other words, we pick an *n* such that

$$n \geq \frac{1}{2\epsilon^2} \ln \frac{2\mathcal{H}}{\delta}$$

This concludes the proof of uniform convergence for the distribution free bound mentioned in the statement of the lemma. The consistency of ERM bound follows from Lemma 2.7. \Box

The above lemma shows that if \mathcal{H} is a finite set, then the uniform convergence bound is $O(\log \mathcal{H})$. Our next plan is to develop a general method to show uniform convergence for infinite hypothesis sets.

3 GROWTH FUNCTION AND VC DIMENSION

3.1 *Growth function*

Let \mathcal{H} be a set of hypothesis we are interested in. Consider the set $S = \{x_1, x_2, \dots, x_n\} \subseteq \mathcal{X}$. How many different ways can the points in S be labelled by the classifiers in \mathcal{H} ?

$$\mathcal{H}_{S} = \left\{ (h(x_1), h(x_2), \dots, h(x_n)) \mid h \in \mathcal{H} \right\}$$

The cardinality of the set \mathcal{H}_S is the number of ways \mathcal{H} can classify the elements in S. The set \mathcal{H}_S can at least be of size 1 and at most be of size 2^n .

$$1 \leq |\mathcal{H}_{\mathrm{S}}| \leq 2^n$$

Note that if $|\mathcal{H}|_{S} < 2^{n}$, then there is a labelling that is not defined by any hypothesis in \mathcal{H} .

The *growth function* $\pi_{\mathcal{H}}(n)$ is the maximum number of distinct classifications possible on an *n* element set by the hypothesis in \mathcal{H} .

$$\pi_{\mathcal{H}}(n) ::= \max\left\{ \left| \mathcal{H}_{S} \right| \mid S \in \mathcal{X}^{n} \right\}$$

From the discussions above we have

3.1 REMARK. $1 \le \pi_{\mathcal{H}}(n) \le 2^n$

3.2 Uniform convergence and growth function

We show the following.

$$\operatorname{Prob}_{\mathrm{S}\sim\mathcal{D}^{n}}\left[\sup_{h\in\mathcal{H}}\left|\mathrm{R}^{\operatorname{erm}}_{\mathrm{S}}(h)-\mathrm{R}(h)\right|>\epsilon\right] < 8\pi_{\mathcal{H}}(n)e^{-\frac{1}{32}n\epsilon^{2}}$$

where $\pi_{\mathcal{H}}(n)$ is the growth function. Note the similarity with the case where $|\mathcal{H}|$ is finite.

We first show the following claim by introducing ghost sampling.

3.2 CLAIM.

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{erm}(h) - R(h) \right| > \epsilon \right] < 2 \qquad \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{erm}(h) - R_{S'}^{erm}(h) \right| > \epsilon/2 \right]$$

Proof. Consider an $S \sim D^n$ that is ϵ -bad. We first identify all hypothesis that makes it ϵ -bad. For an $S \sim D^n$ we define

$$\mathcal{H}_{\epsilon}(S) \quad ::= \quad \left\{ h \in \mathcal{H} \quad | \quad \left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathbf{R}(h) \right| > \epsilon \right\}$$

Note that S is ϵ -bad if and only if $\mathcal{H}_{\epsilon}(S)$ is non-empty. We want a representative hypothesis from $\mathcal{H}_{\epsilon}(S)$. Define

$$h_{\rm S}^{\rm B} = \begin{cases} \text{pick an arbitrary } h \in \mathcal{H}_{\epsilon}({\rm S}), & \text{if } \mathcal{H}_{\epsilon}({\rm S}) \neq \emptyset \\ \text{pick an arbitrary } h \in \mathcal{H}, & \text{otherwise} \end{cases}$$

The construction of $h_{\rm S}^{\rm B}$ ensures that the following statement is correct.

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{\text{erm}}(h) - R(h) \right| > \epsilon \right] = \Pr_{S \sim \mathcal{D}^{n}} \left[\mathcal{H}_{\epsilon}(S) \neq \emptyset \right] = \Pr_{S \sim \mathcal{D}^{n}} \left[\left| R_{S}^{\text{erm}}(h_{S}^{\text{B}}) - R(h_{S}^{\text{B}}) \right| > \epsilon \right]$$
(1)

We have now found another way to talk about the LHS in the statement of the lemma. We move on to understand the RHS of the lemma. Consider arbitrary $S \sim D^n$ and $S' \sim D^n$. Clearly,

$$\left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h_{\mathsf{S}}^{\mathsf{B}}) - \mathbf{R}_{\mathsf{S}'}^{\mathsf{erm}}(h_{\mathsf{S}}^{\mathsf{B}}) \right| > \epsilon/2 \quad \Rightarrow \quad \exists h \in \mathcal{H} \left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathbf{R}_{\mathsf{S}'}^{\mathsf{erm}}(h) \right| > \epsilon/2 \quad \Leftrightarrow \quad \sup_{h \in \mathcal{H}} \left| \mathbf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathbf{R}_{\mathsf{S}'}^{\mathsf{erm}}(h) \right| > \epsilon/2$$

Therefore any S, S' satisfying the LHS also satisfies the RHS. Hence,

$$\Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\sup_{h \in \mathcal{H}} \left| \mathbf{R}_{S}^{\mathsf{erm}}(h) - \mathbf{R}_{S'}^{\mathsf{erm}}(h) \right| > \epsilon/2 \right] \geq \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| \mathbf{R}_{S}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) - \mathbf{R}_{S'}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) \right| > \epsilon/2 \right]$$
(2)

We now lower bound the RHS of above inequality. From the triangular inequality $|a - b| \ge |a| - |b|$ it follows that

$$\left| \mathbf{R}_{\mathrm{S}}^{\mathrm{erm}}(h_{\mathrm{S}}^{\mathrm{B}}) - \mathbf{R}_{\mathrm{S}'}^{\mathrm{erm}}(h_{\mathrm{S}}^{\mathrm{B}}) \right| \geq \left| \mathbf{R}_{\mathrm{S}}^{\mathrm{erm}}(h_{\mathrm{S}}^{\mathrm{B}}) - \mathbf{R}(h_{\mathrm{S}}^{\mathrm{B}}) \right| - \left| \mathbf{R}_{\mathrm{S}'}^{\mathrm{erm}}(h_{\mathrm{S}}^{\mathrm{B}}) - \mathbf{R}(h_{\mathrm{S}}^{\mathrm{B}}) \right|$$

Therefore,

$$\Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| R_{S}^{erm}(h_{S}^{B}) - R_{S'}^{erm}(h_{S}^{B}) \right| > \epsilon/2 \right] \geq \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| R_{S}^{erm}(h_{S}^{B}) - R(h_{S}^{B}) \right| > \epsilon \text{ and } \left| R_{S'}^{erm}(h_{S}^{B}) - R(h_{S}^{B}) \right| < \epsilon/2 \right]$$

Let P and Q be the events $\left| R_{s}^{erm}(h_{s}^{B}) - R(h_{s}^{B}) \right| > \epsilon$ and $\left| R_{s'}^{erm}(h_{s}^{B}) - R(h_{s}^{B}) \right| < \epsilon/2$ respectively. Then

$$\operatorname{Prob}\left[P \cap Q\right] = \operatorname{Prob}\left[P\right] \operatorname{Prob}\left[Q \mid P\right] \text{ or }$$

$$\operatorname{Prob}_{S \sim \mathcal{D}^{n}}\left[\left|\operatorname{R}^{\operatorname{erm}}_{S}(h^{\mathsf{B}}_{\mathsf{S}}) - \operatorname{R}^{\operatorname{erm}}_{\mathsf{S}'}(h^{\mathsf{B}}_{\mathsf{S}})\right| > \epsilon/2\right] \geq$$

$$\operatorname{Prob}_{S \sim \mathcal{D}^{n}}\left[\underbrace{\left|\operatorname{R}^{\operatorname{erm}}_{\mathsf{S}}(h^{\mathsf{B}}_{\mathsf{S}}) - \operatorname{R}(h^{\mathsf{B}}_{\mathsf{S}})\right| > \epsilon}_{P}\right] \operatorname{Prob}_{S \sim \mathcal{D}^{n}}\left[\underbrace{\left|\operatorname{R}^{\operatorname{erm}}_{\mathsf{S}'}(h^{\mathsf{B}}_{\mathsf{S}}) - \operatorname{R}(h^{\mathsf{B}}_{\mathsf{S}})\right| < \epsilon/2}_{Q} \mid P\right] \qquad (3)$$

Our next plan is to lower bound Prob [Q | P]. We need to avoid the conditionality of P. Note that P and h_s^B are correlated. Consider an arbitrary $h \in \mathcal{H}$. We lower bound $\underset{S \sim \mathcal{D}^n}{\text{prob}} \left[\left| \underset{S'}{\text{Rem}}(h) - \underset{N}{\text{R}}(h) \right| < \epsilon/2 \right]$. Define the random variable X_i for all $i \le n$ as follows: choose a random sample $(x_i, y_i) \sim \mathcal{D}$ and let X_i be the indicator random variable for the event $h(x_i) \ne y_i$. It follows from the definition that $\text{Exp} \left[X_i \right] = \underset{N}{\text{R}}(h)$ and therefore $\text{Exp} \left[X_i \right] \in [0, 1]$. Applying Chebyshev inequality on iid Bernolli random variables X_1, \ldots, X_n we have that

$$\operatorname{Prob}_{S\sim\mathcal{D}^n}\left[\left|\operatorname{R}^{\operatorname{erm}}_{S}(h) - \operatorname{R}(h)\right| > \epsilon/2\right] = \operatorname{Prob}\left[\left|\frac{1}{n}\sum_{i}X_i - \operatorname{R}(h)\right| > \epsilon/2\right] < \frac{1}{4n(\epsilon/2)^2} = \frac{1}{n\epsilon^2}$$

For an $n > 2/\epsilon^2$ we get that

$$\Pr_{\mathbf{S}\sim\mathcal{D}^n}\left[\left|\mathbf{R}_{\mathbf{S}}^{\mathsf{erm}}(h)-\mathbf{R}(h)\right|<\epsilon/2\right] > 1-\frac{1}{n\epsilon^2} > \frac{1}{2}$$

The above bound holds for all $h \in \mathcal{H}$ and therefore it also holds for h_{s}^{B} . Hence

$$\operatorname{Prob}\left[Q \mid P\right] = \operatorname{Prob}_{S \sim \mathcal{D}^{n}}\left[\left|R_{S'}^{\operatorname{erm}}(h_{S}^{\operatorname{B}}) - R(h_{S}^{\operatorname{B}})\right| < \epsilon/2 \mid P\right] > \frac{1}{2}$$

Substituting this in Equation 3 we get

$$\Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| \mathbb{R}_{S}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) - \mathbb{R}_{S'}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) \right| > \epsilon/2 \right] > \frac{1}{2} \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| \mathbb{R}_{S}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) - \mathbb{R}(h_{S}^{\mathsf{B}}) \right| > \epsilon \right]$$

Substituting Equation 2 in the left hand side of the above inequality we get

$$\Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\sup_{h \in \mathcal{H}} \left| \mathbf{R}_{S}^{\mathsf{erm}}(h) - \mathbf{R}_{S'}^{\mathsf{erm}}(h) \right| > \epsilon/2 \right] > \frac{1}{2} \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\left| \mathbf{R}_{S}^{\mathsf{erm}}(h_{S}^{\mathsf{B}}) - \mathbf{R}(h_{S}^{\mathsf{B}}) \right| > \epsilon \right]$$

Substituting Equation 1 in the right hand side of the above inequality we get

$$\Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{erm}(h) - R(h) \right| > \epsilon \right] < 2 \Pr_{\substack{S \sim \mathcal{D}^{n} \\ S' \sim \mathcal{D}^{n}}} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{erm}(h) - R_{S'}^{erm}(h) \right| > \epsilon/2 \right]$$

This concludes the proof of the claim.

3.3 claim.

$$\Pr_{\substack{S \sim \mathcal{D}^n \\ S' \sim \mathcal{D}^n}} \left[\sup_{h \in \mathcal{H}} \left| \mathsf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathsf{R}_{\mathsf{S}'}^{\mathsf{erm}}(h) \right| > \epsilon/2 \right] \leq 2 \Pr_{\substack{S \sim \mathcal{D}^n \\ \sigma_i \sim \mathsf{R}a}} \left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum \sigma_i \mathbf{1}_{h(x_i) \neq y_i} \right| > \epsilon/4 \right]$$

Proof. The loss function L is 0-1. Hence, for an $h \in \mathcal{H}$ and $S \sim \mathcal{D}^n$ the empirical risk $\mathbb{R}_{s}^{erm}(h)$ is equivalent to

$$\mathbf{R}_{S}^{\text{erm}}(h) = \frac{1}{|S|} \sum_{(x,y)\in S} \mathbf{L}(h(x), y) = \frac{1}{|S|} \sum_{(x,y)\in S} \mathbf{1}_{h(x)\neq y}$$

Therefore

$$\Pr_{\substack{S \sim \mathcal{D}^n \\ S' \sim \mathcal{D}^n}} \left[\sup_{h \in \mathcal{H}} \left| \mathbf{R}_{S}^{\text{erm}}(h) - \mathbf{R}_{S'}^{\text{erm}}(h) \right| > \epsilon/2 \right] = \Pr_{\substack{S \sim \mathcal{D}^n \\ S' \sim \mathcal{D}^n}} \left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum \mathbf{1}_{h(x_i) \neq y_i} - \mathbf{1}_{h(x_i') \neq y_i'} \right| > \epsilon/2 \right]$$
(4)

We first show the following for all $h \in \mathcal{H}$:

$$\Pr_{\substack{S\sim\mathcal{D}^n\\S'\sim\mathcal{D}^n}}\left[\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{1}1_{h(x_i)\neq y_i}-1_{h(x_i')\neq y_i'}\right|>\frac{\epsilon}{2}\right]=\Pr_{\substack{S,S'\sim\mathcal{D}^n\\\sigma_i\sim Ra}}\left[\sup_{h\in\mathcal{H}}\left|\frac{1}{n}\sum_{n}\sigma_i\left(1_{h(x_i)\neq y_i}-1_{h(x_i')\neq y_i'}\right)\right|>\frac{\epsilon}{2}\right]$$
(5)

Let $p = \mathbb{R}(h)$. Hence $\underset{(x,y)\sim\mathcal{D}}{\text{Prob}} \left[1_{h(x)\neq y} = 1 \right] = p$. The correctness of Equation 5 follows from table:

$$\begin{array}{c|ccc} 1_{h(x_i)\neq y_i} - 1_{h(x_i')\neq y_i'} & \Pr{ob} & \sigma_i \Big(1_{h(x_i)\neq y_i} - 1_{h(x_i')\neq y_i'} \Big) & \Pr{ob} \\ \hline 0 & p^2 + (1-p)^2 & 0 & p^2 + (1-p)^2 \\ -1 & p(1-p) & -1 & 1/2p(1-p) + 1/2p(1-p) \\ +1 & p(1-p) & +1 & 1/2p(1-p) + 1/2p(1-p) \end{array}$$

Applying the fact that $|a - b| \le |a| + |b|$ and union bound, RHS of Equation 5 can be bound by

$$\begin{aligned} & \operatorname{Prob}_{\substack{S,S'\sim\mathcal{D}^n\\\sigma_i\sim\mathsf{R}a}} \left[\sup_{h\in\mathcal{H}} \left|\frac{1}{n}\sum_{\sigma_i}\sigma_i\left(1_{h(x_i)\neq y_i}-1_{h(x_i')\neq y_i'}\right)\right| > \epsilon/2\right] \leq \\ & \operatorname{Prob}_{\substack{S\sim\mathcal{D}^n\\\sigma_i\sim\mathsf{R}a}} \left[\sup_{h\in\mathcal{H}} \left|\frac{1}{n}\sum_{\sigma_i}\sigma_i 1_{h(x_i)\neq y_i}\right| > \epsilon/4\right] + \operatorname{Prob}_{\substack{S'\sim\mathcal{D}^n\\\sigma_i\sim\mathsf{R}a}} \left[\sup_{h\in\mathcal{H}} \left|\frac{1}{n}\sum_{\sigma_i}\sigma_i 1_{h(x_i')\neq y_i'}\right| > \epsilon/4\right] \end{aligned}$$

The claim now follows from Equation 4.

In our final step we show the following using a technique called *conditioning on samples*.

3.4 CLAIM.

$$\Pr_{\substack{S \sim \mathcal{D}^{n} \\ \sigma_{i} \sim Ra}} \left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum \sigma_{i} \mathbf{1}_{h(x_{i}) \neq y_{i}} \right| > \epsilon/4 \right] \leq 2\pi_{\mathcal{H}}(n) e^{-n\epsilon^{2}/32}$$

Proof. For an *n* element $S \sim D^n$, let Pr_S be the following probability

$$\Pr_{S} = \Pr_{\sigma_{i} \sim Ra} \left[\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum \sigma_{i} \mathbf{1}_{h(x_{i}) \neq y_{i}} \right| > \epsilon/4 \mid S \right]$$

The growth function says that irrespective of the sample S, there are at most $\pi_{\mathcal{H}}(n)$ distinct classification hypothesis. Note that even though \mathcal{H} might be an infinite set, only $\pi_{\mathcal{H}}(n)$ many

distinct hypothesis are there. Therefore we can apply union bound on Pr_S .

$$\Pr_{S} \leq \sum_{i=1}^{\pi_{\mathcal{H}}(n)} \Pr_{OD}\left[\left|\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}\mathbf{1}_{h(x_{i})\neq y_{i}}\right| > \epsilon/4 \mid S\right]$$

The random variable $X_i ::= \sigma_i \mathbf{1}_{h(x_i) \neq y_i}$ has an expected value 0. Moreover, $-1 \le X_i \le 1$. We can apply the Hoeffding bound and bound the probability Pr_S :

$$\Pr_{S} \leq 2\pi_{\mathcal{H}}(n)e^{-n\epsilon^{2}/32}$$

The claim now follows from the fact that the bound is irrespective of the S we picked. \Box

Combining the three claims we derive,

3.5 LEMMA.

$$\Pr_{S\sim\mathcal{D}^n}\left[\sup_{h\in\mathcal{H}}\left|\mathsf{R}^{\mathsf{erm}}_{\mathsf{S}}(h)-\mathsf{R}(h)\right|>\epsilon\right] < 8\pi_{\mathcal{H}}(n)e^{-\frac{1}{32}n\epsilon^2}$$

Proof.

$$\begin{split} \Pr_{S \sim \mathcal{D}^{n}} \left[\sup_{h \in \mathcal{H}} \left| \mathsf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathsf{R}(h) \right| > \epsilon \right] &< 2 \operatorname{Prob}_{\substack{S \sim \mathcal{D}^{n} \\ \mathsf{S}' \sim \mathcal{D}^{n}}} \left[\sup_{h \in \mathcal{H}} \left| \mathsf{R}_{\mathsf{S}}^{\mathsf{erm}}(h) - \mathsf{R}_{\mathsf{S}'}^{\mathsf{erm}}(h) \right| > \epsilon/2 \right] \\ &< 4 \operatorname{Prob}_{\substack{S \sim \mathcal{D}^{n} \\ \sigma_{i} \sim \mathsf{R}a}} \left[\sup_{h \in \mathcal{H}} \sigma_{i} \left| \frac{1}{n} \sum \mathbb{1}_{h(x_{i}) \neq y_{i}} \right| > \epsilon/4 \right] \\ &< 8 \pi_{\mathcal{H}}(n) e^{-\frac{1}{32}n\epsilon^{2}} \end{split}$$

3.3 VC dimension

Consider a bag of hypothesis \mathcal{H} . We say that an *n* element set $S \subseteq \mathcal{X}$ is *shattered* by \mathcal{H} if $|\mathcal{H}_S| = 2^n$. In other words,

Set $S \subseteq \mathcal{X}$ is shattened by \mathcal{H} if for all labelling $\rho : S \to \{0, 1\}$, there is an $h \in \mathcal{H}$ such that $\rho(x) = h(x)$ for all $x \in S$.

The *VC dimension* of \mathcal{H} (denoted by VC(\mathcal{H})) is the largest *n* such that there exists an *n* element set shattered by \mathcal{H} . In other words,

$$VC(\mathcal{H}) = \sup\{n \mid \pi_{\mathcal{H}}(n) = 2^n\}$$

To restate: if $VC(\mathcal{H}) \ge n$, then there exists an *n* element set S such that S is shattered by \mathcal{H} .

Let us look at few examples.

3.6 EXAMPLE. Consider a feature in the real line. That is $\mathcal{X} \subseteq \mathbb{R}$. Let \mathcal{H} consists of all *rays* - left closed right infinite sets. A ray $[a, \infty] \in \mathcal{H}$ labels a point x as 1 if $a \leq x$ and 0 otherwise. Note that \mathcal{H} shatters all one element sets - to label a point x one take the hypothesis $[x, \infty]$ and to label it 0 take the hypothesis $[x + 1, \infty]$. We claim that $VC(\mathcal{H}) = 1$ by arguing that no two element set can be shattered by \mathcal{H} . Let x < y be a two element set. The labelling x to 1 and y to 0 is not possible by any hypothesis in \mathcal{H} .

3.7 EXAMPLE. Let \mathcal{H} be the set of all left and right closed sets over the real lines. By similar arguments as above we can show that $VC(\mathcal{H}) = 2$.

3.8 EXAMPLE. Let \mathcal{H} consist of all lines in \mathbb{R}^2 . Then VC(\mathcal{H}) = 3. If \mathcal{H} consists of all hyperplanes in \mathbb{R}^d , then VC(\mathcal{H}) = d + 1.

3.9 EXAMPLE. Let \mathcal{H} consists of all convex sets in \mathbb{R}^2 . We show that $VC(\mathcal{H}) = \infty$ by arguing

for all *n*, there exists an *n* element set S that is shattered.

Consider an arbitrary *n*. Pick a set S of *n* points equally separated in the unit circle. Consider any labelling of S. The convex set formed by the convex hull of all the 1 labelled points is a hypothesis $h \in \mathcal{H}$ that separates the 1 labelled and the 0 labelled points. Since this can be done for any labelling of S it follows that \mathcal{H} shatters S.

We showed that for an arbitrary *n*, there exists a set S of *n* points shattered by \mathcal{H} . Therefore, for all *n*, there is a set S shattered by \mathcal{H} and hence VC(\mathcal{H}) = ∞ .

We will soon see that when $n > VC(\mathcal{H})$, $\pi_{\mathcal{H}}(n)$ is polynomial and when $n \leq VC(\mathcal{H})$, $\pi_{\mathcal{H}}(n)$ is exponential. In practise the number of parameters required to learn by an algorithm is proportional to $VC(\mathcal{H})$ and $n > 10VC(\mathcal{H})$ works well in practise.

3.4 Sauer's Lemma and bounds on growth function

Our aim is to show the following.

3.10 LEMMA (Sauer-Shelah). Let \mathcal{H} be a (possibly infinite) set of hypothesis of finite VC dimension. Then

$$\pi_{\mathcal{H}}(n) = \begin{cases} 2^n, & \text{for } n \leq \text{VC}(\mathcal{H}) \\ f(n), & \text{otherwise} \end{cases}$$

where f(n) is a bounded by the polynomial

$$f(n) < \sum_{i=0}^{\mathbf{VC}(\mathcal{H})} \binom{n}{i}$$

Let $VC(\mathcal{H}) = d$. Thus for an $n > VC(\mathcal{H})$,

$$\pi_{\mathcal{H}}(n) \leq \mathcal{O}(dn^d)$$

Proof. First, let us consider the case where $n \leq VC(\mathcal{H})$. Then there exists an $S \subseteq \mathcal{X}$ of size n such that \mathcal{H} shatters S. It follows that $\pi_{\mathcal{H}}(n) = 2^n$.

Next, let us consider the case where $n > VC(\mathcal{H})$. Define B(n, k) to be the cardinality of the largest set consisting of labellings of an *n* element set where no *k* element set is shattered.

 $B(n,k) ::= \max\{ |L| \mid L \subseteq \{0,1\}^n \text{ is a set of labels of an } n \text{ element set where no } k \text{ element set is shattered} \}$

Our aim is to show that

$$B(n,k) = \sum_{j=0}^{k-1} \binom{n}{k}$$
(6)

• First we show that $B(n, k) \ge RHS$ of Equation 6. It suffices to show a set L of labellings of an *n* element set where no *k* element set is shattered and such that size of L is equal to RHS. Consider the set L of union L_i for all *i* where $0 \le i < k$ and L_i consists of all labellings of an *n* element set with exactly *i* many labels being 1. Clearly size of L is equal to RHS. We need to argue that no *k* element set is shattered. Consider any *k* element set. There is no mapping that labels all of them 1. Hence it is not shattered.

• We now show that $B(n, k) \le RHS$ of Equation 6. We prove the claim by a double induction on n and k.

Consider an arbitrary set $S = \{s_1, s_2, ..., s_n\}$ and let L be the largest set of all possible labellings that do not shatter any k element set. We partition L into three parts U, M⁰ and M¹ as follows: a labelling $(a_1, a_2, ..., a_{n-1}, 0) \in M^0$ if and only if $(a_1, a_2, ..., a_{n-1}, 1) \in M^1$ and U = L \ M⁰ \cup M¹ where $a_i \in \{0, 1\}$ for all $i \le n - 1$. Clearly

$$B(n,k) \le |L| = |U \cup M^0| + |M^1|$$
(7)

We bound $|U \cup M^0|$ first. Let T be the project of the first n - 1 labellings of the sets U and M⁰.

$$T ::= \{\vec{a} \mid (\vec{a}, 0) \in U\} \cup \{\vec{a} \mid (\vec{a}, 1) \in U\} \cup \{\vec{a} \mid (\vec{a}, 0) \in M^0\}$$

Let $\vec{a} \in \{0, 1\}^{n-1}$ and $* \in \{0, 1\}$. From the definition of U and M⁰, we know that if $(\vec{a}, *) \in U$ then $(\vec{a}, 0) \notin M^0$. Moreover if $(\vec{a}, 0) \in M^0$ then $(\vec{a}, *) \notin U$. Therefore $|T| = |U \cup M^0|$. Hence

$$|U \cup M^0| = |T| \le B(n - 1, k)$$

since no k element set is shattered in T. Now we bound $|M^1|$. We claim that no k - 1 size subset of $\{s_1, s_2, \ldots, s_{n-1}\}$ is shattered by M^1 . We show this by contradiction. Without loss of generality assume $T = \{s_1, s_2, \ldots, s_{k-1}\}$ is shattered by M^1 . Then the k element set $T \cup \{s_n\}$ is shattered by L since each M^0 and M^1 contains the shattered set T and s_n is labelled 0 and 1 respectively by M^0 and M^1 . This is a contradiction. Since no k - 1 size subset of $S \setminus \{s_n\}$ is shattered by M^1 we have that

$$|\mathbf{M}^1| \le \mathbf{B}(n-1, k-1)$$

Therefore,

$$B(n,k) \le B(n-1,k) + B(n-1,k-1)$$
 (from Equation 7)

$$= \sum_{j=0}^{k-1} \binom{n-1}{j} + \sum_{j=1}^{k-1} \binom{n-1}{j-1}$$
 (inductive hypothesis)

$$= \binom{n-1}{0} + \sum_{j=1}^{k-1} \binom{n-1}{j} + \binom{n-1}{j-1}$$

$$= \sum_{j=0}^{k-1} \binom{n}{j}$$
 (from Lemma 5.1)

This concludes the proof of the bound on B(n, k). We now argue the bound on $\pi_{\mathcal{H}}(n)$. Let the VC dimension of a set of hypothesis \mathcal{H} be k. Then no k + 1 size set can be shattered by \mathcal{H} . Therefore $\pi_{\mathcal{H}}(n) \leq B(n, k + 1)$. This concludes the proof.

The above lemma shows that $\pi_{\mathcal{H}}(n)$ grows exponentially when *n* is less than the VC dimension of \mathcal{H} . On the other hand $\pi_{\mathcal{H}}(n)$ grows polynomially once *n* is greater than the VC dimension of \mathcal{H} . This enables us to show uniform convergence and consistency of ERM for \mathcal{H} of finite VC dimension.

3.5 Uniform convergence for bags with a finite VC dimension

We show that uniform convergence holds for a bag of classifiers \mathcal{H} with finite VC dimension. Consider a bag of hypothesis \mathcal{H} with a finite VC dimension. That is, let VC(\mathcal{H}) = d for a $d \in \mathbb{N}$.

3.11 LEMMA. Distribution free uniform convergence holds for a set of hypothesis \mathcal{H} with a finite VC dimension d. Moreover, consistency of ERM also holds.

Proof. Consider a bag of hypothesis \mathcal{H} where VC(\mathcal{H}) = d. Our aim is to show that \mathcal{H} satisfies *distribution free* uniform convergence for the bound given in the statement of lemma. Let ϵ , δ be arbitrary numbers in (0, 1). We need to show that there exists a function $\mathcal{N}_{uc} : (0, 1)^2 \to \mathbb{N}$ such that for all $n > \mathcal{N}_{uc}(\epsilon, \delta)$,

$$\Pr_{S \sim \mathcal{D}^n} \left[\sup_{h \in \mathcal{H}} \left| R_{S}^{erm}(h) - R(h) \right| > \epsilon \right] < \delta$$

From Lemma 3.5 we have that

$$\operatorname{Prob}_{S\sim\mathcal{D}^n}\left[\sup_{h\in\mathcal{H}}\left|\operatorname{R}^{\operatorname{erm}}_{S}(h)-\operatorname{R}(h)\right|>\epsilon\right] < 8\pi_{\mathcal{H}}(n)e^{-\frac{1}{32}n\epsilon^2}$$

From the above statement and Lemma 3.10 for an n > d,

$$\operatorname{Prob}_{S\sim\mathcal{D}^n}\left[\sup_{h\in\mathcal{H}}\left|\operatorname{R}^{\operatorname{erm}}_{S}(h)-\operatorname{R}(h)\right|>\epsilon\right] < 8dn^d e^{-\frac{1}{32}n\epsilon^2}$$

To make left hand side less than δ we pick *n* large enough so that $8dn^d e^{-\frac{1}{32}n\epsilon^2} \leq \delta$. For this to happen

$$\ln\left(8dn^{d}e^{-\frac{1}{32}n\epsilon^{2}}\right) \le \ln\delta \quad \text{iff} \quad \ln 8d + d\ln n - \frac{1}{32}n\epsilon^{2} \le \ln\delta$$

In other words, we pick an *n* such that

$$n \geq \frac{32}{\epsilon^2} \left(\ln \frac{8dn^d}{\delta} \right) = \frac{32}{\epsilon^2} \left(\ln \frac{8d}{\delta} + d\ln n \right)$$

This concludes the proof of uniform convergence for the distribution free bound mentioned in the statement of the lemma. The consistency of ERM bound follows from Lemma 2.7. \Box

4 RECAP STATISTICS

4.1 THEOREM (weak law of large numbers). Let $X_1, X_2, ..., X_n$ be identical random variables such that $\text{Exp} \left[X_i \right] = \mu$. Then, for all $\epsilon, \delta > 0$ there exists an N s.t.

$$\operatorname{Prob}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| > \epsilon\right] < \delta \qquad (\forall n \ge N)$$

The central limit theorem informally says the following: $\frac{1}{n} \sum_{i=1}^{n} X_i$ approximates the normal distribution $\mathcal{N}(p, p(1-p)/n)$.

4.2 LEMMA (Hoeffding bound). Let $X_1, X_2, ..., X_n$ be identical random variables such that $Prob [a \le X_i \le b] = 1$ for all $i \le n$. Let $Exp[X_i] = \mu$. Then,

$$\operatorname{Prob}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right] \leq 2e^{-2n\epsilon^{2}/(b-a)^{2}}$$

4.3 LEMMA (Union bound). Let A and B be two events. Then

$$\mathsf{Prob}\left[\mathsf{A} \cup \mathsf{B}\right] \leq \mathsf{Prob}\left[\mathsf{A}\right] + \mathsf{Prob}\left[\mathsf{B}\right]$$

Let A_1, A_2, \ldots, A_n be *n* events. Then,

$$\operatorname{Prob}\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Prob}\left[A_{i}\right]$$

4.4 LEMMA (*Chebyshev inequality*). Let $X_1, X_2, ..., X_n$ be iid random variables, where $\text{Exp} [X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$ for all $i \le n$. Then

$$\operatorname{Prob}\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|>c\right] \leq \frac{\sigma^{2}}{nc^{2}}$$

If in addition X_i s are Bernoulli random variables and $\mu \in [0, 1]$

$$\Prob\left[\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| > c\right] < \frac{\mu(1-\mu)}{nc^{2}} \le \frac{1}{4nc^{2}}$$

We denote the *indicator random variable* for an event E by 1_E . The *Rademacher random variable* (Ra) is defined as

$$\sigma = \begin{cases} -1, & \text{with probability } \frac{1}{2} \\ +1, & \text{with probability } \frac{1}{2} \end{cases}$$

5 RECAP COMBINATORICS

5.1 lemma.

$$\binom{n}{j} = \binom{n-1}{j-1} + \binom{n-1}{j}$$

Proof. Let $S = \{s_1, ..., s_n\}$ be an *n* element set. Consider the following combinatorial problem. How many different ways can one select a *j* element set from S? Clearly this is equal to $\binom{n}{j}$. We now count the same in a different manner. A *j* element subset of S either contains s_1 or not. Let T_1 be all the *j* element sets that contains s_1 and T_2 be all the *j* element sets that do not contain s_1 . A set in T_1 can be picked by first picking s_1 and then picking j - 1 other elements from the remaining n - 1 element set $S \setminus \{s_1\}$. Therefore $|T_1| = \binom{n-1}{j-1}$. On the other hand, any set in T_2 contains *j* elements none of which is s_1 . A set in T_2 can be picked by picking *j* elements from the n - 1 element set $S \setminus \{s_1\}$. Therefore $|T_2|$ is $\binom{n-1}{j}$. This concludes the proof.