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1. machine learning basics

1 machine learning basics

In this section, we look at machine learning basics and standard terminology.

1.1 Learning tasks

We are interested in supervised learning. In this setting an algorithm learns a concept using a
training data that includes both the model features and expected output labels. There are two
important supervised learning tasks.

Classification In a classification task, the objective of the learning algorithm is to classify the
data into finite number of classes. The number of classes can be binary (eg. {0, 1} or {−1,+1} or
{M, F}) or non-binary depending on the task.

Let us consider a few examples. In the first example of obese classification, the task is to
classify a person into obese or not based on his/her height and weight. Here, the height and
weight are the input features and the two classes are obese or not obese. In the second example
of gender identification, the task is to identify the gender of a person from his/her height. Another
example is that of face recognition. The task is to identify a person from his/her picture. This is
an example of a non-binary classification task.

Perceptron is an example of a classification algorithm.

Regression The output of a regression task is an integer/real number. Examples of regression:
prediction of temperature, prediction of stock value.

1.2 Machine learning terminologies

We list some standard machine learning terminologies.

1. Feature space: We denote by X = {x1, x2, . . . } the feature space. Each xi ∈ X is a feature
vector (containing multiple features). We do not represent xi as a vector to keep the
notations simplified. In the obese classification example, the feature vector consists of
height and weight of a person. In face recognition, the feature vector contains pixel values.

2. Label: This is the class assigned to an input. In the obese example, a person is labelled
obese or not. We will denote the set of labels by Y . In this writeup, unless otherwise
mentioned Y = {0, 1}.

3. Target distribution: The target D is a probability distribution over X × Y . Consider the
example of gender identification we saw above. In this example Y = {M, F} and the
input feature is height. Observe that for a particular height there are both males and
females. Thus the machine learning algorithm gets its training data from a particular
distribution D. Note that the distribution D is unknown to the learning algorithm. The
aim of the learning algorithm is to learn D. We are interested in finding Prob

[
y = 1|x

]
in

a classification algorithm and Exp
[
y|x

]
in regression.

We denote by (x, y)∼D to mean x ∈ X and y ∈ Y is sampled according to the distribution
D. We extend this to sampling an n element set S = {(x1, y1), (x2, y2), . . . , (xn, yn)} as S∼Dn.

4. Classifier or hypothesis function: A hypothesis function h : X → Y classifies a feature
vector. It will also be called hypothesis.
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1.3. bias variance tradeoff

5. Bag of classifiers: We fix a set of classifiers H = {h1, h2, . . . }, where each hi is a hypothesis
function.

6. Loss function: It measures the error in prediction by a learning algorithm. A loss function
is a function f : Y × Y → R. Example loss functions are zero-one loss

L0−1(a, y) ::=

0, if a = y

1, otherwise

and regression loss
Lreg(a, y) ::= (a − y)2

In this lecture we will fix the range of the loss function to be between zero and one. That
is, L : Y × Y → [0, 1]. Note that the exact function is not important for our discussion.

7. Training input: A learning algorithm learns a model from the training set. It will be
denoted by S = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

1.3 Bias variance tradeoff

Consider the following. Assume we have a dataset of 10 points {(xi , yi)}i∈[10] that are zeros of a
50th degree polynomial. Consider the following two models (1) train a degree two polynomial
model and (2) train a degree 10 polynomial model. Which of the following models will learn
the 50th degree polynomial better? It turns out that from 10 points, a 10 degree polynomial has
lots of flexibility and it can end up being far away from the 50th degree polynomial. On the
other hand, the two degree polynomial has less flexibility. Therefore, even though a 10 degree
polynomial models the input data points perfectly, it is actually not a very good model.

The above discussion is called as the bias variance tradeoff.

1. Learn the input data accurately - requires a higher model complexity. The error in input
learning error is called bias error. Underfitting can lead to larger bias error.

2. Generalization, or fit the target accurately - requires a lower model complexity. The error
in target data is called variance error. Overfitting can lead to larger variance error.

2 erm and uniform convergence

2.1 Empirical risk minimization (ERM)

The risk of a hypothesis h ∈ H is defined with respect to D as follows

R(h) = Exp
(xi ,yi )∼D

[
L(h(xi), yi)

]
=

∫
L(h(xi), yi)) dProb

[
(xi , yi)∼D

]
Note that risk is defined with respect to the original distribution D which we do not know. Once
risk is defined, we can define the “best classifier” or the hypothesis that has the least risk.

h∗ = arg min
h∈H

R(h)

A learning algorithm learns a hypothesis by looking at only a finite number of samples. Let us
assume S = {(x1, y1), (x2, y2), . . . , (xn, yn)} is the input to the learning algorithm. For a hypothesis
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2. erm and uniform convergence

h ∈ H, we define the empirical risk as

Rerm
S (h) =

1
|S|

∑
(xi ,yi )∈S

L(h(xi), yi)

Based on this input S an algorithm can at the most find the hypothesis that minimizes the
empirical risk.

herm
S = arg min

h∈H
Rerm

S (h)

This principle is called empirical risk minimization (ERM).
We now look at couple of properties of risk and empirical risk. These properties will be

useful in the proofs. The first remark follows easily from the definition of herm
S and h∗.

2.1 remark. Rerm
S (herm

S ) ≤ Rerm
S (h∗) and R(h∗) ≤ R(herm

S ).

The next remark follows from the fact that L(h(x), y) ∈ [0, 1], ∀(x, y) ∈ D.

2.2 remark. For all h ∈ H and S ⊆ X × Y , Rerm
S (h) ∈ [0, 1] and R(h) ∈ [0, 1].

The aim of a learning algorithm is to find h∗, the hypothesis with least risk. But, the learning
algorithm can only see the input sample and the best it can do is find herm

S , the hypothesis with
the least empirical risk. What is the relationship between herm

S and h∗? Only if herm
S is “close” to

h∗ can we say that the concept has been learned. Note also that we are not worried about the
algorithmic complexity of learning herm

S .

2.2 Consistency of ERM

Our aim is to ensure that herm
S is either same as or at least close to h∗. It is natural to think that

the more the samples you collect (or larger the set S is) the better chance of herm
S being close to

h∗. We say that herm
S is ϵ-close to h∗ if∣∣∣Rerm

S (herm
S ) − R(h∗)

∣∣∣ ≤ ϵ

How large should our sample set S be for herm
S to be ϵ-close to h∗? This is captured by the

property on H called consistency of ERM.

2.3 definition (consistency of ERM). We say that H satisfies consistency of ERM over D if there
is a function N Derm : (0,1) × (0,1)→ N such that for all ϵ, δ ∈ (0,1) and for all n ≥ N Derm(ϵ, δ) the
following holds:

Prob
S∼Dn

[∣∣∣Rerm
S (herm

S ) − R(h∗)
∣∣∣ > ϵ

]
< δ

We also say that H satisfies consistency of ERM if there is a function Nerm : (0,1) × (0,1)→ N
such that for all distributions D and for all ϵ, δ ∈ (0, 1), Nerm(ϵ, δ) ≥ N Derm(ϵ, δ).

In the above definition, the function N Derm is called the consistency of ERM bound with
respect to distribution D. Similarly, the function Nerm is called the consistency of ERM bound.

Let us try to understand the above definition. Consider a set S∼Dn of cardinality n where
each xi ∈ S is drawn iid (independent and identically distributed) from the distribution D. We
will be “happy” if we can find an herm

S such that the empirical risk wrt to herm
S is ϵ-close to the

least possible risk R(h∗). In other words, |Rerm
S (herm

S ) − R(h∗)| ≤ ϵ. This may not be always possible,
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2.3. uniform convergence

since the sample set S might be skewed. If we are really unlucky the set S picked iid can all turn
out to be of class 0. Therefore, we can only “probabilistically” hope to get a good classification
hypothesis. In other words, we want that with a high probability (of at least 1 − δ) the sampled
set S gives us an herm

S that is ϵ-close to h∗. To summarize, we are interested in identifying a
hypothesis that gives low error with high probability or

Prob
S∼Dn

[∣∣∣Rerm
S (herm

S ) − R(h∗)
∣∣∣ ≤ ϵ

]
≥ 1 − δ

Note that Definition 2.3 talks about identifying a hypothesis that gives high error with low
probability. The two notions are the same.

The number N Derm(ϵ, δ) or the consistency of ERM bound wrt D, depends only on ϵ, δ and
D. We know that if the sample S is a singleton set, we are highly unlikely to get a hypothesis
herm

S to our liking. As the size of S increases we expect to get closer and closer to the best h∗.
Definition 2.3 says that for any ϵ and δ there exists a large enough N Derm(ϵ, δ) such that an iid
sample S of cardinality at least N Derm(ϵ, δ) gives an herm

S that is ϵ-close to h∗ with high probability.
We conclude by observing that if such an N Derm(ϵ, δ) exist, then an S of any size n ≥ N Derm(ϵ, δ)
sampled iid also gives us a good enough herm

S .
The final piece in the definition is Nerm(ϵ, δ) or the consistency of ERM bound. This is a

distribution free bound. An H satisfy consistency of ERM if no matter what the distribution D is,
if we sample an iid S of size at least Nerm(ϵ, δ), then we will get an herm

S that is ϵ-close to h∗ with
high probability. Note that we will be interested in the distribution free bound since a machine
learning algorithm does not apriori know the distribution D.

Do all hypothesis class H satisfy consistency of ERM? Is there an H that satisfy consistency
of ERM? These are questions we answer in this writeup.

2.3 Uniform convergence

We will now look at uniform convergence which is a necessary and sufficient condition for H to
satisfy consistency of ERM.

2.4 definition (uniform convergence). We say that H satisfies uniform convergence over distri-
bution D if there is a function N Duc : (0,1) × (0,1)→ N such that for all ϵ, δ ∈ (0,1) and for all
n ≥ N Duc(ϵ, δ) the following holds:

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< δ

We also say that H satisfies uniform convergence if there is a function Nuc : (0, 1) × (0, 1)→ N
such that for all distribution D and for all ϵ, δ ∈ (0, 1), Nuc(ϵ, δ) ≥ N Duc(ϵ, δ).

Here, “sup R” for a set R ⊆ R is the supremum of R. The function Nuc (resp. N Duc) is called
the uniform convergence bound (resp. for D).

Let us now try to understand the above definition. Recall the use of ϵ and δ in the definition
of consistency of ERM. Let S∼Dn be a set of cardinality n. We say that the set S is ϵ-bad if there
exists a hypothesis h ∈ H such that |Rerm

S (h)−R(h)| > ϵ. In other words, for an ϵ-bad S the “worst”
hypothesis h gives an empirical error Rerm

S (h) that is not ϵ-close to the risk R(h).

(definition) S is ϵ-bad if ∃h ∈ H such that |Rerm
S (h) − R(h)| > ϵ

Uniform convergence says that the probability of picking an ϵ-bad S is small (less than δ).
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2. erm and uniform convergence

To summarize, we say that a hypothesis bagH satisfies the uniform convergence with respect
to a distribution D if for any ϵ and δ there exists an N = N Duc(ϵ, δ) such that the probability of
an ϵ-bad S of size at least N picked iid from distribution D is less than δ.

To get a better understanding of uniform convergence, let us restate our discussion. We say
that the set S is ϵ-good if for all h ∈ H the empirical risk Rerm

S (h) is ϵ-close to risk R(h). Uniform
convergence says that for any ϵ and δ there is an N such that the probability of picking an
ϵ-good iid sample S from distribution D is high (greater than 1 − δ).

The uniform convergence bound Nuc is a distribution free bound. That is no matter what
the distribution is, if we pick an iid sample S of size at least Nuc(ϵ, δ), then the probability of
picking an ϵ-bad S is less than δ.

The following observation will be useful in understanding some of the proofs.

2.5 remark. Let S ⊆ X × Y be an arbitrary set. Then

S is ϵ-bad iff ∃h ∈ H
∣∣∣Rerm

S (h) − R(h)
∣∣∣ > ϵ iff sup

h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ

Next we observe that uniform convergence is as strong as weak law of large numbers.

2.6 lemma (uniform convergence⇒ weak law of large numbers). Let H satisfy uniform conver-
gence for distribution D. Then for all ϵ, δ in (0, 1) and all h ∈ H there exists an N such that

Prob
S∼Dn

[ ∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< δ (∀n ≥ N)

Proof. Let us assume H satisfies uniform convergence for distribution D. Let ϵ and δ be as given
in the statement of the lemma. Let N = N Duc(ϵ, δ). Consider an h ∈ H. We show that for all n ≥ N
the statement of the lemma is true.

Consider a finite set S∼Dn of cardinality n ≥ N. It follows from definition that if |Rerm
S (h) −

R(h)| > ϵ then S is ϵ-bad. In other words for all n ≥ N,

Prob
S∼Dn

[ ∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]
≤ Prob

S∼Dn

[
S is ϵ-bad

]
= Prob

S∼Dn

[
∃̂h ∈ H

∣∣∣Rerm
S (̂h) − R(̂h)

∣∣∣ > ϵ
]

< δ

The latter inequality follows from the fact that H satisfies uniform convergence. This concludes
the proof of the lemma.

2.4 Consistency of ERM iff Uniform convergence

We first show that if H satisfies uniform convergence then it satisfies consistency of ERM.

2.7 lemma (uniform convergence⇒ consistency of ERM). Let H satisfy uniform convergence over
D. Then H satisfies consistency of ERM over D. Moreover N Derm(ϵ, δ) = N Duc(ϵ/2, δ).

Proof. Let H satisfy uniform convergence over D. Our aim is to give the consistency of ERM
bound N Derm. Consider an arbitrary ϵ, δ ∈ (0,1). We show that N Derm(ϵ, δ) = N Duc(ϵ/2, δ) satisfies
the conditions of consistency of ERM. Pick any n ≥ N Duc(ϵ/2, δ). Since H satisfies uniform
convergence over D:

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ/2
]

< δ
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2.5. uniform convergence for a finite set of hypothesis

Consider an S∼Dn and the following equation

Rerm
S (herm

S ) − R(h∗) = R(herm
S ) − Rerm

S (herm
S )

+ Rerm
S (herm

S ) − Rerm
S (h∗)

+ Rerm
S (h∗) − R(h∗)

From the definition of herm
S we have that Rerm

S (herm
S ) − Rerm

S (h∗) ≤ 0. Therefore,

Rerm
S (herm

S ) − R(h∗) ≤ R(herm
S ) − Rerm

S (herm
S ) + Rerm

S (h∗) − R(h∗)

Since the left hand side is a non negative number∣∣∣Rerm
S (herm

S ) − R(h∗)
∣∣∣ ≤ 2 sup

h∈H
|Rerm

S (h) − R(h)|

Consistency of ERM now follows from the fact that

Prob
S∼Dn

[∣∣∣Rerm
S (herm

S ) − R(h∗)
∣∣∣ > ϵ

]
≤ Prob

S∼Dn

[
sup
h∈H
|Rerm

S (h) − R(h)| > ϵ/2
]

< δ

This concludes the proof.

The other direction of the above lemma, that is consistency of ERM implies uniform conver-
gence, was shown by Vapnik. We skip the non-trivial proof.

2.8 lemma (consistency of ERM⇒ uniform convergence). Let H satisfy consistency of ERM over
D. Then H satisfies uniform convergence over D.

2.5 Uniform convergence for a finite set of hypothesis

We show that uniform convergence holds for a finite bag of classifiers H.

2.9 lemma. Distribution free uniform convergence holds for a finite set of hypothesis H. Furthermore,
uniform convergence holds for the following bound:

Nuc(ϵ, δ) =
1

2ϵ2 ln
2H
δ

Therefore, consistency of ERM holds for the bound:

Nerm(ϵ, δ) =
2
ϵ2 ln

2H
δ

Proof. Consider a finite set H. Our aim is to show that H satisfies distribution free uniform
convergence for the bound given in the statement of lemma. Let ϵ, δ be arbitrary numbers in
(0, 1) and D an arbitrary distribution over X × Y . We need to show that for all n > Nuc(ϵ, δ),

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< δ

Fix an h ∈ H. We define the random variable Xi for all i ≤ n as follows: choose a random sample
(xi , yi)∼D and let Xi = L(h(xi), yi). Note that Exp

[
Xi

]
= R(h) for all i ≤ n. Since the loss function

is such that L(h(x), y) ∈ [0, 1] we have that 0 ≤ Xi ≤ 1 for all i ≤ n. Therefore, we can apply the
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3. growth function and vc dimension

Hoeffding bound (regardless of the distribution D) on the iid random variables X1, X2, . . . , Xn.

Prob
S∼Dn

[ ∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

= Prob
[∣∣∣1
n

n∑
i=1

Xi − R(h)
∣∣∣ > ϵ

]
≤ 2e−2nϵ2

We now bound the probability of an ϵ-bad set S using union bound. For all distributions D,

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]
≤

∑
h∈H

Prob
S∼Dn

[ ∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

≤ 2|H|e−2nϵ2

To make left hand side less than δ we pick n large enough so that 2|H|e−2nϵ2 ≤ δ. For this to
happen

ln
(
2|H|e−2nϵ2)

≤ ln δ iff ln 2H − 2nϵ2 ≤ ln δ

In other words, we pick an n such that

n ≥ 1
2ϵ2 ln

2H
δ

This concludes the proof of uniform convergence for the distribution free bound mentioned in
the statement of the lemma. The consistency of ERM bound follows from Lemma 2.7.

The above lemma shows that if H is a finite set, then the uniform convergence bound is
O(logH). Our next plan is to develop a general method to show uniform convergence for
infinite hypothesis sets.

3 growth function and vc dimension

3.1 Growth function

Let H be a set of hypothesis we are interested in. Consider the set S = {x1, x2, . . . , xn} ⊆ X . How
many different ways can the points in S be labelled by the classifiers in H?

HS =
{
(h(x1), h(x2). . . . , h(xn)) | h ∈ H

}
The cardinality of the set HS is the number of ways H can classify the elements in S. The set HS
can at least be of size 1 and at most be of size 2n.

1 ≤
∣∣∣HS

∣∣∣ ≤ 2n

Note that if
∣∣∣H∣∣∣

S
< 2n, then there is a labelling that is not defined by any hypothesis in H.

The growth function πH(n) is the maximum number of distinct classifications possible on an
n element set by the hypothesis in H.

πH(n) ::= max
{∣∣∣HS

∣∣∣ | S ∈ X n
}

From the discussions above we have

3.1 remark. 1 ≤ πH(n) ≤ 2n
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3.2. uniform convergence and growth function

3.2 Uniform convergence and growth function

We show the following.

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 8πH(n)e−
1

32nϵ
2

where πH(n) is the growth function. Note the similarity with the case where
∣∣∣H∣∣∣ is finite.

We first show the following claim by introducing ghost sampling.

3.2 claim.

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 2 Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
Proof. Consider an S∼Dn that is ϵ-bad. We first identify all hypothesis that makes it ϵ-bad. For
an S∼Dn we define

Hϵ(S) ::=
{
h ∈ H |

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
}

Note that S is ϵ-bad if and only if Hϵ(S) is non-empty. We want a representative hypothesis
from Hϵ(S). Define

hB
S =

 pick an arbitrary h ∈ Hϵ(S), if Hϵ(S) , ∅
pick an arbitrary h ∈ H, otherwise

The construction of hB
S ensures that the following statement is correct.

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

= Prob
S∼Dn

[
Hϵ(S) , ∅

]
= Prob

S∼Dn

[∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ

]
(1)

We have now found another way to talk about the LHS in the statement of the lemma. We move
on to understand the RHS of the lemma. Consider arbitrary S∼Dn and S′∼Dn. Clearly,∣∣∣Rerm

S (hB
S) − Rerm

S′ (hB
S)
∣∣∣ > ϵ/2 ⇒ ∃h ∈ H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2 ⇔ sup

h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

Therefore any S, S′ satisfying the LHS also satisfies the RHS. Hence,

Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
≥ Prob

S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − Rerm
S′ (hB

S)
∣∣∣ > ϵ/2

]
(2)

We now lower bound the RHS of above inequality. From the triangular inequality
∣∣∣a − b

∣∣∣ ≥∣∣∣a∣∣∣ − ∣∣∣b∣∣∣ it follows that∣∣∣Rerm
S (hB

S) − Rerm
S′ (hB

S)
∣∣∣ ≥

∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ − ∣∣∣Rerm

S′ (hB
S) − R(hB

S)
∣∣∣

Therefore,

Prob
S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − Rerm
S′ (hB

S)
∣∣∣ > ϵ/2

]
≥ Prob

S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ and

∣∣∣Rerm
S′ (hB

S) − R(hB
S)
∣∣∣ < ϵ/2

]
Let P and Q be the events

∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ and

∣∣∣Rerm
S′ (hB

S) − R(hB
S)
∣∣∣ < ϵ/2 respectively. Then

9



3. growth function and vc dimension

Prob
[
P ∩ Q

]
= Prob

[
P
]
Prob

[
Q | P

]
or

Prob
S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − Rerm
S′ (hB

S)
∣∣∣ > ϵ/2

]
≥

Prob
S∼Dn

S′∼Dn

[ ∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ︸                    ︷︷                    ︸

P

]
Prob
S∼Dn

S′∼Dn

[ ∣∣∣Rerm
S′ (hB

S) − R(hB
S)
∣∣∣ < ϵ/2︸                       ︷︷                       ︸

Q

| P
]

(3)

Our next plan is to lower bound Prob
[
Q | P

]
. We need to avoid the conditionality of P. Note that

P and hB
S are correlated. Consider an arbitrary h ∈ H. We lower bound Prob

S∼Dn

[∣∣∣Rerm
S′ (h) − R(h)

∣∣∣ <
ϵ/2

]
. Define the random variable Xi for all i ≤ n as follows: choose a random sample (xi , yi)∼D

and let Xi be the indicator random variable for the event h(xi) , yi . It follows from the
definition that Exp

[
Xi

]
= R(h) and therefore Exp

[
Xi

]
∈ [0, 1]. Applying Chebyshev inequality

on iid Bernolli random variables X1, . . . , Xn we have that

Prob
S∼Dn

[∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ/2
]

= Prob
[∣∣∣1
n

∑
i

Xi − R(h)
∣∣∣ > ϵ/2

]
<

1
4n(ϵ/2)2 =

1
nϵ2

For an n > 2/ϵ2 we get that

Prob
S∼Dn

[∣∣∣Rerm
S (h) − R(h)

∣∣∣ < ϵ/2
]

> 1 − 1
nϵ2 >

1
2

The above bound holds for all h ∈ H and therefore it also holds for hB
S. Hence

Prob
[
Q | P

]
= Prob

S∼Dn

[∣∣∣Rerm
S′ (hB

S) − R(hB
S)
∣∣∣ < ϵ/2 | P

]
>

1
2

Substituting this in Equation 3 we get

Prob
S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − Rerm
S′ (hB

S)
∣∣∣ > ϵ/2

]
>

1
2
Prob
S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ

]
Substituting Equation 2 in the left hand side of the above inequality we get

Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
>

1
2
Prob
S∼Dn

S′∼Dn

[∣∣∣Rerm
S (hB

S) − R(hB
S)
∣∣∣ > ϵ

]
Substituting Equation 1 in the right hand side of the above inequality we get

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 2 Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
This concludes the proof of the claim.

In the claim given below we denote by σi a Rademacher random variable. The claim is
proved using a technique called Symmetrization.
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3.2. uniform convergence and growth function

3.3 claim.

Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
≤ 2 Prob

S∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi1h(xi ),yi

∣∣∣ > ϵ/4
]

Proof. The loss function L is 0-1. Hence, for an h ∈ H and S∼Dn the empirical risk Rerm
S (h) is

equivalent to

Rerm
S (h) =

1∣∣∣S∣∣∣ ∑
(x,y)∈S

L(h(x), y) =
1∣∣∣S∣∣∣ ∑

(x,y)∈S

1h(x),y

Therefore

Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
= Prob

S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣1
n

∑
1h(xi ),yi − 1h(x′i ),y

′
i

∣∣∣ > ϵ/2
]

(4)

We first show the following for all h ∈ H:

Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣1
n

∑
1h(xi ),yi − 1h(x′i ),y

′
i

∣∣∣ > ϵ

2

]
= Prob

S,S′∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi

(
1h(xi ),yi − 1h(x′i ),y

′
i

)∣∣∣ > ϵ

2

]
(5)

Let p = R(h). Hence Prob
(x,y)∼D

[
1h(x),y = 1

]
= p. The correctness of Equation 5 follows from table:

1h(xi ),yi − 1h(x′i ),y
′
i

Prob σi

(
1h(xi ),yi − 1h(x′i ),y

′
i

)
Prob

0 p2 + (1 − p)2 0 p2 + (1 − p)2

-1 p(1 − p) -1 1/2p(1 − p) + 1/2p(1 − p)
+1 p(1 − p) +1 1/2p(1 − p) + 1/2p(1 − p)

Applying the fact that |a − b| ≤ |a| + |b| and union bound, RHS of Equation 5 can be bound by

Prob
S,S′∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi

(
1h(xi ),yi − 1h(x′i ),y

′
i

)∣∣∣ > ϵ/2
]
≤

Prob
S∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi1h(xi ),yi

∣∣∣ > ϵ/4
]

+ Prob
S′∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi1h(x′i ),y

′
i

∣∣∣ > ϵ/4
]

The claim now follows from Equation 4.

In our final step we show the following using a technique called conditioning on samples.

3.4 claim.

Prob
S∼Dn

σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi1h(xi ),yi

∣∣∣ > ϵ/4
]
≤ 2πH(n)e−nϵ

2/32

Proof. For an n element S∼Dn, let PrS be the following probability

PrS = Prob
σi∼Ra

[
sup
h∈H

∣∣∣1
n

∑
σi1h(xi ),yi

∣∣∣ > ϵ/4 | S
]

The growth function says that irrespective of the sample S, there are at most πH(n) distinct
classification hypothesis. Note that even though Hmight be an infinite set, only πH(n) many

11



3. growth function and vc dimension

distinct hypothesis are there. Therefore we can apply union bound on PrS.

PrS ≤
πH(n)∑
i=1

Prob
[∣∣∣1
n

∑
σi1h(xi ),yi

∣∣∣ > ϵ/4 | S
]

The random variable Xi ::= σi1h(xi ),yi has an expected value 0. Moreover, −1 ≤ Xi ≤ 1. We can
apply the Hoeffding bound and bound the probability PrS:

PrS ≤ 2πH(n)e−nϵ
2/32

The claim now follows from the fact that the bound is irrespective of the S we picked.

Combining the three claims we derive,

3.5 lemma.

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 8πH(n)e−
1

32nϵ
2

Proof.

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 2 Prob
S∼Dn

S′∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − Rerm

S′ (h)
∣∣∣ > ϵ/2

]
< 4 Prob

S∼Dn

σi∼Ra

[
sup
h∈H

σi

∣∣∣1
n

∑
1h(xi ),yi

∣∣∣ > ϵ/4
]

< 8 πH(n)e−
1

32nϵ
2

3.3 VC dimension

Consider a bag of hypothesisH. We say that an n element set S ⊆ X is shattered byH if
∣∣∣HS

∣∣∣ = 2n.
In other words,

Set S ⊆ X is shattered by H if for all labelling ρ : S→ {0, 1}, there is an h ∈ H such
that ρ(x) = h(x) for all x ∈ S.

The VC dimension of H (denoted by VC(H)) is the largest n such that there exists an n element
set shattered by H. In other words,

VC(H) = sup{n | πH(n) = 2n}

To restate: if VC(H) ≥ n, then there exists an n element set S such that S is shattered by H.
Let us look at few examples.

3.6 example. Consider a feature in the real line. That is X ⊆ R. Let H consists of all rays -
left closed right infinite sets. A ray [a,∞] ∈ H labels a point x as 1 if a ≤ x and 0 otherwise.
Note that H shatters all one element sets - to label a point x one take the hypothesis [x,∞] and
to label it 0 take the hypothesis [x + 1,∞]. We claim that VC(H) = 1 by arguing that no two
element set can be shattered by H. Let x < y be a two element set. The labelling x to 1 and y to
0 is not possible by any hypothesis in H.

12



3.4. sauer’s lemma and bounds on growth function

3.7 example. Let H be the set of all left and right closed sets over the real lines. By similar
arguments as above we can show that VC(H) = 2.

3.8 example. Let H consist of all lines in R2. Then VC(H) = 3. If H consists of all hyperplanes
in Rd , then VC(H) = d + 1.

3.9 example. Let H consists of all convex sets in R2. We show that VC(H) = ∞ by arguing

for all n, there exists an n element set S that is shattered.

Consider an arbitrary n. Pick a set S of n points equally separated in the unit circle. Consider
any labelling of S. The convex set formed by the convex hull of all the 1 labelled points is a
hypothesis h ∈ H that separates the 1 labelled and the 0 labelled points. Since this can be done
for any labelling of S it follows that H shatters S.

We showed that for an arbitrary n, there exists a set S of n points shattered by H. Therefore,
for all n, there is a set S shattered by H and hence VC(H) = ∞.

We will soon see that when n > VC(H), πH(n) is polynomial and when n ≤ VC(H), πH(n)
is exponential. In practise the number of parameters required to learn by an algorithm is
proportional to VC(H) and n > 10VC(H) works well in practise.

3.4 Sauer’s Lemma and bounds on growth function

Our aim is to show the following.

3.10 lemma (Sauer-Shelah). Let H be a (possibly infinite) set of hypothesis of finite VC dimension.
Then

πH(n) =

2n, for n ≤ VC(H)

f (n), otherwise

where f (n) is a bounded by the polynomial

f (n) <
VC(H)∑
i=0

(
n
i

)
Let VC(H) = d. Thus for an n > VC(H),

πH(n) ≤ O(dnd)

Proof. First, let us consider the case where n ≤ VC(H). Then there exists an S ⊆ X of size n such
that H shatters S. It follows that πH(n) = 2n.

Next, let us consider the case where n > VC(H). Define B(n, k) to be the cardinality of the
largest set consisting of labellings of an n element set where no k element set is shattered.

B(n, k) ::= max
{∣∣∣L∣∣∣ | L ⊆ {0, 1}n is a set of labels of an n element set where no k element set is shattered

}
Our aim is to show that

B(n, k) =
k−1∑
j=0

(
n
k

)
(6)
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3. growth function and vc dimension

• First we show that B(n, k) ≥ RHS of Equation 6. It suffices to show a set L of labellings of
an n element set where no k element set is shattered and such that size of L is equal to RHS.
Consider the set L of union Li for all i where 0 ≤ i < k and Li consists of all labellings of an n
element set with exactly i many labels being 1. Clearly size of L is equal to RHS. We need to
argue that no k element set is shattered. Consider any k element set. There is no mapping that
labels all of them 1. Hence it is not shattered.

•We now show that B(n, k) ≤ RHS of Equation 6. We prove the claim by a double induction on
n and k.

Consider an arbitrary set S = {s1, s2, . . . , sn} and let L be the largest set of all possible
labellings that do not shatter any k element set. We partition L into three parts U, M0 and
M1 as follows: a labelling (a1, a2, . . . , an−1,0) ∈ M0 if and only if (a1, a2, . . . , an−1,1) ∈ M1 and
U = L \ M0 ∪M1 where ai ∈ {0, 1} for all i ≤ n − 1. Clearly

B(n, k) ≤ |L| = |U ∪M0| + |M1| (7)

We bound |U ∪M0| first. Let T be the project of the first n − 1 labellings of the sets U and M0.

T ::= {a⃗ | (a⃗, 0) ∈ U} ∪ {a⃗ | (a⃗, 1) ∈ U} ∪ {a⃗ | (a⃗, 0) ∈ M0}

Let a⃗ ∈ {0, 1}n−1 and ∗ ∈ {0, 1}. From the definition of U and M0, we know that if (a⃗, ∗) ∈ U then
(a⃗, 0) < M0. Moreover if (a⃗, 0) ∈ M0 then (a⃗, ∗) < U. Therefore |T| = |U ∪M0|. Hence

|U ∪M0| = |T| ≤ B(n − 1, k)

since no k element set is shattered in T. Now we bound |M1|. We claim that no k − 1 size subset
of {s1, s2, . . . , sn−1} is shattered by M1. We show this by contradiction. Without loss of generality
assume T = {s1, s2, . . . , sk−1} is shattered by M1. Then the k element set T ∪ {sn} is shattered by
L since each M0 and M1 contains the shattered set T and sn is labelled 0 and 1 respectively by
M0 and M1. This is a contradiction. Since no k − 1 size subset of S\{sn} is shattered by M1 we
have that

|M1| ≤ B(n − 1, k − 1)

Therefore,

B(n, k) ≤ B(n − 1, k) + B(n − 1, k − 1) (from Equation 7)

=
k−1∑
j=0

(
n − 1
j

)
+

k−1∑
j=1

(
n − 1
j − 1

)
(inductive hypothesis)

=
(
n − 1

0

)
+

k−1∑
j=1

(
n − 1
j

)
+

(
n − 1
j − 1

)

=
k−1∑
j=0

(
n
j

)
(from Lemma 5.1)

This concludes the proof of the bound on B(n, k). We now argue the bound on πH(n). Let the VC
dimension of a set of hypothesis H be k. Then no k + 1 size set can be shattered by H. Therefore
πH(n) ≤ B(n, k + 1). This concludes the proof.
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3.5. uniform convergence for bags with a finite vc dimension

The above lemma shows that πH(n) grows exponentially when n is less than the VC di-
mension of H. On the other hand πH(n) grows polynomially once n is greater than the VC
dimension of H. This enables us to show uniform convergence and consistency of ERM for H of
finite VC dimension.

3.5 Uniform convergence for bags with a finite VC dimension

We show that uniform convergence holds for a bag of classifiers H with finite VC dimension.
Consider a bag of hypothesis H with a finite VC dimension. That is, let VC(H) = d for a d ∈ N.

3.11 lemma. Distribution free uniform convergence holds for a set of hypothesis H with a finite VC
dimension d. Moreover, consistency of ERM also holds.

Proof. Consider a bag of hypothesis H where VC(H) = d. Our aim is to show that H satisfies
distribution free uniform convergence for the bound given in the statement of lemma. Let ϵ, δ be
arbitrary numbers in (0, 1). We need to show that there exists a function Nuc : (0, 1)2 → N such
that for all n > Nuc(ϵ, δ),

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< δ

From Lemma 3.5 we have that

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 8πH(n)e−
1

32nϵ
2

From the above statement and Lemma 3.10 for an n > d,

Prob
S∼Dn

[
sup
h∈H

∣∣∣Rerm
S (h) − R(h)

∣∣∣ > ϵ
]

< 8dnde−
1

32nϵ
2

To make left hand side less than δ we pick n large enough so that 8dnde−
1

32nϵ
2 ≤ δ. For this to

happen

ln
(
8dnde−

1
32nϵ

2)
≤ ln δ iff ln 8d + d ln n − 1

32
nϵ2 ≤ ln δ

In other words, we pick an n such that

n ≥ 32
ϵ2

(
ln

8dnd

δ

)
=

32
ϵ2

(
ln

8d
δ

+ d ln n
)

This concludes the proof of uniform convergence for the distribution free bound mentioned in
the statement of the lemma. The consistency of ERM bound follows from Lemma 2.7.
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4. recap statistics

4 recap statistics

4.1 theorem (weak law of large numbers). Let X1, X2, . . . , Xn be identical random variables such
that Exp

[
Xi

]
= µ. Then, for all ϵ, δ > 0 there exists an N s.t.

Prob
[∣∣∣1
n

n∑
i=1

Xi − µ
∣∣∣ > ϵ

]
< δ (∀n ≥ N)

The central limit theorem informally says the following: 1
n

n∑
i=1

Xi approximates the normal

distribution N (p, p(1 − p)/n).

4.2 lemma (Hoeffding bound). Let X1, X2, . . . , Xn be identical random variables such that Prob
[
a ≤

Xi ≤ b
]

= 1 for all i ≤ n. Let Exp
[
Xi

]
= µ. Then,

Prob
[∣∣∣1
n

n∑
i=1

Xi − µ
∣∣∣ ≥ ϵ

]
≤ 2e−2nϵ2/(b−a)2

4.3 lemma (Union bound). Let A and B be two events. Then

Prob
[
A∪ B

]
≤ Prob

[
A
]

+ Prob
[
B
]

Let A1, A2, . . . , An be n events. Then,

Prob
[ n⋃
i=1

Ai

]
≤

n∑
i=1

Prob
[
Ai

]

4.4 lemma (Chebyshev inequality). Let X1, X2, . . . , Xn be iid random variables, where Exp
[
Xi

]
= µ

and Var(Xi) = σ2 for all i ≤ n. Then

Prob
[∣∣∣1
n

n∑
i=1

Xi − µ
∣∣∣ > c

]
≤ σ2

nc2

If in addition Xis are Bernoulli random variables and µ ∈ [0, 1]

Prob
[∣∣∣1
n

n∑
i=1

Xi − µ
∣∣∣ > c

]
<

µ(1 − µ)
nc2 ≤ 1

4nc2

We denote the indicator random variable for an event E by 1E. The Rademacher random variable
(Ra) is defined as

σ =

−1, with probability 1
2

+1, with probability 1
2
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5 recap combinatorics

5.1 lemma. (
n
j

)
=

(
n − 1
j − 1

)
+

(
n − 1
j

)
Proof. Let S = {s1, . . . , sn} be an n element set. Consider the following combinatorial problem.
How many different ways can one select a j element set from S? Clearly this is equal to

(n
j

)
. We

now count the same in a different manner. A j element subset of S either contains s1 or not. Let
T1 be all the j element sets that contains s1 and T2 be all the j element sets that do not contain
s1. A set in T1 can be picked by first picking s1 and then picking j − 1 other elements from
the remaining n − 1 element set S\{s1}. Therefore

∣∣∣T1

∣∣∣ =
(n−1
j−1

)
. On the other hand, any set in T2

contains j elements none of which is s1. A set in T2 can be picked by picking j elements from
the n − 1 element set S\{s1}. Therefore

∣∣∣T2

∣∣∣ is
(n−1

j

)
. This concludes the proof.
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