Hypersafety Verification and Programming Assignment Evaluation

Kumar Madhukar

TCS Research

Indian Institute of Technology Goa

January 21, 2021

- problem of evaluating an assignment submission, given a reference implementation
- property: for the same input, the outputs always match
- can be asserted in a composed program, but not easy to verify
- such proofs often require that the functionality of every component program be captured fully
- background: a *k*-safety (hypersafety) property is a program safety property whose violation is witnessed by at least *k* finite runs of a program (e.g. determinism is a 2-safety property)

¹Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER '20).
²ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas • such proofs often require that the functionality of every component program be captured fully

sum-v1 (int n)	sum-v2 (int m)	pre: (n == m)	
s1 = 0; i = 1;	s2 = 0; j = 1;	<pre>// (i == j) & (s1 == s2) while ((i <= n) (j <= m))</pre>	
<pre>// 2*s1 == i(i-1) while (i <= n) s1 = s1 + i;</pre>	<pre>// 2*s2 == j(j-1) while (j <= m) s2 = s2 + j;</pre>	if (i <= n) s1 = s1 + i; i = i + 1 if (j <= m)	
i = i + 1;	j = j + 1;	s2 = s2 + j; j = j + 1	
return s1;	return s2;	<i>post:</i> (s1 == s2)	

hypersafety verification techniques also face this challenge

¹Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER '20).
²ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

• such proofs often require that the functionality of every component program be captured fully

sum-v1 (int n)	sum-v2 (int m)	pre: (n == m)	
s1 = 0; i = 1;	s2 = 0; j = 1;	<pre>// (i == j) & (s1 == s2) while ((i <= n) (j <= m))</pre>	
// 2*s1 == i(i-1) while (i <= n)	// 2*s2 == j(j-1) while (j <= m)	if (i <= n) s1 = s1 + i; i = i + 1	
s1 = s1 + i; i = i + 1;	s2 = s2 + j; j = j + 1;	if (j <= m) s2 = s2 + j; j = j + 1	
return s1;	return s2;	<i>post:</i> (s1 == s2)	

hypersafety verification techniques also face and partially address this challenge

¹Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER '20).
²ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

- if some interleaving violates the postcondition, then all of them will
- any self-composition is sufficient to reduce *k*-safety to safety (e.g. lockstep, sequential)
- different self-composed programs would require different (safe) inductive invariants
- find the "right" composition, and the inductive invariant for that
- work in a restricted language ${\cal L}$
- explore all compositions, discarding "bad" ones (that cannot have inductive invariants in $\mathcal{L})$

- if some interleaving violates the postcondition, then all of them will
- any self-composition is sufficient to reduce *k*-safety to safety (e.g. lockstep, sequential)
- different self-composed programs would require different (safe) inductive invariants
- find the "right" composition, and the inductive invariant for that
- work in a restricted language \mathcal{L} fixed, and user-supplied
- explore all compositions, discarding "bad" ones (that cannot have inductive invariants in $\mathcal{L})$

An example

<pre>doubleSquare-v1(x) int z, y=0; z = 2*x;</pre>	<pre>doubleSquare-v2(x) int z, y=0; z = x;</pre>	<pre>pre: (x1 > 0) & (x2 > 0) (y1 == 0) & (y2 == 0) (z1 == 2*x1) & (z2 == x2)</pre>
<pre>while (z>0) z -= 1; y = y+x;</pre>	<pre>while (z>0) z -= 1; y = y+x;</pre>	(x1 == x2) post: (y1 == y2)
return y;	y = 2*y return y;	<pre>user-supplied predicates: (z1 == 2*z2),(z1 == 2*z2-1) (y1 == 2*y2),(y1 == 2*y2+x2)</pre>

- not all compositions are easy to prove
- the lockstep composition these does not even have a safe inductive invariant in LIA

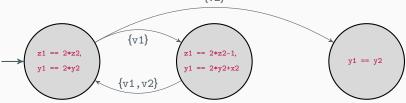
An example

<pre>doubleSquare-v1(x) int z, y=0; z = 2*x;</pre>	<pre>doubleSquare-v2(x) int z, y=0; z = x;</pre>	<pre>pre: (x1 > 0) & (x2 > 0) (y1 == 0) & (y2 == 0) (z1 == 2*x1) & (z2 == x2)</pre>
<pre>while (z>0) z -= 1; y = y+x;</pre>	<pre>while (z>0) z -= 1; y = y+x;</pre>	(x1 == x2) post: (y1 == y2)
return y;	y = 2*y return y;	<pre>user-supplied predicates: (z1 == 2*z2),(z1 == 2*z2-1) (y1 == 2*y2),(y1 == 2*y2+x2)</pre>

• an "easy" proof if we compose two loop iterations of v1 with one of v2

An example

<pre>doubleSquare-v1(x) int z, y=0; z = 2*x;</pre>	<pre>doubleSquare-v2(x) int z, y=0; z = x;</pre>	<pre>pre: (x1 > 0) & (x2 > 0) (y1 == 0) & (y2 == 0) (z1 == 2*x1) & (z2 == x2)</pre>
while (z>0) z -= 1;	while (z>0) z -= 1;	(x1 = x2)
<pre>y = y+x; return y;</pre>	y = y+x; y = 2*y	<pre>post: (y1 == y2) user-supplied predicates:</pre>
icourn y,	return y;	(z1 == 2*z2),(z1 == 2*z2-1) (y1 == 2*y2),(y1 == 2*y2+x2)
	{v2}	



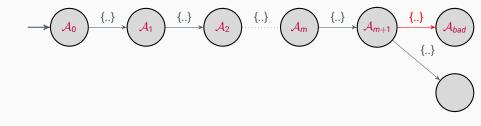
Semantic Self Composition Function

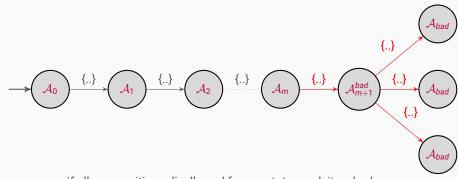
- program semantics as transition systems T = (S, R, F)
- every terminal state (in F) has only one outgoing transition to itself
- $f: S^k \to \mathbb{P}(\{1..k\})$ maps each state to a set of copies that run next
- represented as a set of logical conditions, C_M for every non-empty subset $M \subseteq \{1..k\}$
- $f(s_1,...,s_k) = M \iff (s_1,...,s_k) \models C_M$
- f must also be well-defined and fair

- $T^f = (S^k, R^f, F^k)$
- R^f includes a transition from $(s_1, ..., s_k)$ to $(s'_1, ..., s'_k)$ iff
 - $f(s_1, ..., s_k) = M$ and
 - $(\forall i \in M. (s_i, s'_i) \in R) \land (\forall i \notin M. s_i = s'_i)$
- finding a composition-invariant pair (f, Inv)
 - undecidable in general; fix a language
 - a set of predicates \mathcal{P} and their boolean combinations $(\mathcal{L}_{\mathcal{P}})$
- a transition system has an inductive invariant in $\mathcal{L}_\mathcal{P}$ if and only if its abstraction using \mathcal{P} is safe

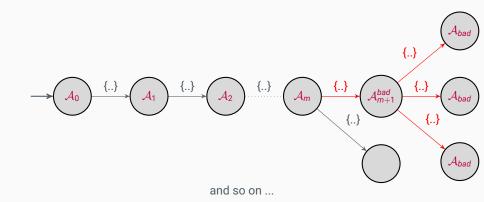
- initialize the composition function to lockstep (default)
- abstract T^f with the predicates ${\cal P}$
- check if it is possible to start from pre and violate the post
- if not, then proved
- else, take the trace, modify composition, and try again
- if no more compositions left to try
 - return (language is insufficient)

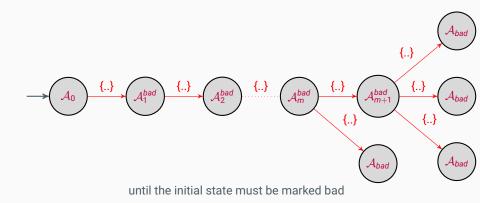
disallow the (state, composition) pair reaching bad





if all compositions disallowed from a state, mark it as bad





return, i.e. no composition-invariant pair exists (in the given language)

Extending PDSC with Refinement

- initialize the composition function to lockstep (default)
- abstract T^f with the predicates ${\cal P}$
- check if it is possible to start from pre and violate the post
- if not, then proved
- else, take the trace, modify composition, and try again
- if no more compositions left to try
 - return (language is insufficient)

Extending PDSC with Refinement

- initialize the composition function to lockstep (default)
- abstract T^f with the predicates \mathcal{P}
- check if it is possible to start from pre and violate the post
- if not, then proved
- else, take the trace, modify composition, and try again
- if no more compositions left to try
 - return (language is insufficient)
 - check if the abstract trace is spurious; if not, return unsafe (and counterexample)
 - if yes, add a predicate to remove the spurious transition, and restart the search

Refinement

• spurious transition $\langle a_{src}, tr, a_{tgt} \rangle$

$$\begin{aligned} a_{src}(X) \wedge tr(X,X') &\Rightarrow \neg a_{tgt}(X') \\ p(Y \subseteq X) \wedge a_{src}(X) \wedge tr(X,X') &\Rightarrow \neg a_{tgt}(X') \\ p(Y \subseteq X) \wedge a_{src}(X) \wedge tr(X,X') &\Rightarrow \bot \end{aligned}$$

• the problem of abductive inference

$$\forall ((X \cup X') \setminus Y). a_{src}(X) \land tr(X, X') \Rightarrow \neg a_{tgt}(X')$$

$$\exists ((X \cup X') \setminus Y). a_{src}(X) \land tr(X, X') \land a_{tgt}(X')$$

• solve for *p*(*Y*) using SyGuS and SMT solvers (CVC4 and Z3)

Claim

The refinement ensures progress, i.e. the synthesized predicate eliminates the spurious transition.

Automatically Synthesized Predicates

<pre>doubleSquare-v1(x) int z, y=0; z = 2*x;</pre>	<pre>doubleSquare-v2(x) int z, y=0; z = x;</pre>	<pre>pre: (x1 > 0) & (x2 > 0) (y1 == 0) & (y2 == 0) (z1 == 2*x1) & (z2 == x2)</pre>
while (z>0) z -= 1; y = y+x;	<pre>while (z>0) z -= 1; y = y+x;</pre>	(x1 == x2) post: (y1 == y2)
return y;	y = 2*y return y;	<pre>refinement predicates: (z1 == 2*z2),(z1 == 2*z2-1) (y1 == 2*y2),(y1 == 2*y2+x2)</pre>
	{v2}	

- implemented our ideas in the pdsc tool
- SyGuS (CVC4-1.8) gets nice-looking predicates, but is slower
- QE (Z3) works quicker, but the predicates can be big formulas
 - eliminate more variables to get shorter expressions

Experiments

S. No.	Benchmark	Source	Safe/Unsafe	SyGuS (#pred, time)	QE (#preds, time)
1.	sum_to_n	crafted	safe	timeout	8, 1m30s
2.	sum_to_n_err	crafted	unsafe	0, 1.1s	0, 0.8s
3.	inc-dec	crafted	safe	5, 39 secs	8, 35.8 secs
4.	squareSum	cav19	safe	0, 2.2 secs	0, 1.1 secs
5.	sum-pc	cav19	safe	5, 4m5.3s	1, 11.9 secs
6.	fig4_1	icse16	unsafe	timeout	2, 7.63 secs
7.	fig4_2	icse16	unsafe	timeout	2, 7.65 secs
8.	fig4_ref_ref	icse16	safe	0, 0.8 secs	0, 0.6 secs
9.	subsume_1	icse16	unsafe	timeout	3, 13 secs
10.	subsume_2	icse16	unsafe	timeout	2, 8.8 secs
11.	subsume_ref_ref		safe	timeout	1, 3.9 secs
12.	puzzle_1	derived from icse16	unsafe	timeout	4, 26.8 secs
13.	puzzle_2	derived from icse16	unsafe	timeout	8, 2m25s
14.	puzzle_3	derived from icse16	safe	timeout	2, 11.9s
15.	halfSquare	cav19	safe	timeout	4, 1m10s
16.	doubleSquare_1	derived from cav19	safe	timeout	6, 1m55s
17.	doubleSquare_2	derived from cav19	safe	timeout	3, 43.8s
18.	doubleSquare_3	derived from cav19	safe	timeout	5, 1m29s

- Automated Hypersafety Verification (CAV 2019)
- Semantic Program Alignment for Equivalence Checking (PLDI 2019)
- Property Directed Self Composition (CAV 2019)

- hypersafety verification/program equivalence/assignment evaluation
- finding correctness proof in an easy-to-prove composition
- need to generalize the discovered predicates
- interpolants from infeasibility proofs

Thanks for your attention.

Questions?

kumar.madhukar@tcs.com