
Hypersafety Verification and
Programming Assignment Evaluation

Kumar Madhukar

TCS Research

Indian Institute of Technology Goa

January 21, 2021

Assignment Evaluation and Hypersafety Motivation1 ,2

• problem of evaluating an assignment submission, given a reference
implementation

• property: for the same input, the outputs always match

• can be asserted in a composed program, but not easy to verify

• such proofs often require that the functionality of every component
program be captured fully

• background: a k-safety (hypersafety) property is a program safety property
whose violation is witnessed by at least k finite runs of a program (e.g.
determinism is a 2-safety property)

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

Hypersafety Verification and Programming Assignment Evaluation 2

Assignment Evaluation and Hypersafety Motivation1 ,2

• such proofs often require that the functionality of every component
program be captured fully

sum-v1 (int n)

s1 = 0; i = 1;

// 2*s1 == i(i-1)
while (i <= n)

s1 = s1 + i;
i = i + 1;

return s1;

sum-v2 (int m)

s2 = 0; j = 1;

// 2*s2 == j(j-1)
while (j <= m)

s2 = s2 + j;
j = j + 1;

return s2;

pre: (n == m)

// (i == j) & (s1 == s2)
while ((i <= n) || (j <= m))

if (i <= n)
s1 = s1 + i; i = i + 1

if (j <= m)
s2 = s2 + j; j = j + 1

post: (s1 == s2)

• hypersafety verification techniques also face this challenge

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

Hypersafety Verification and Programming Assignment Evaluation 2

Assignment Evaluation and Hypersafety Motivation1 ,2

• such proofs often require that the functionality of every component
program be captured fully

sum-v1 (int n)

s1 = 0; i = 1;

// 2*s1 == i(i-1)
while (i <= n)

s1 = s1 + i;
i = i + 1;

return s1;

sum-v2 (int m)

s2 = 0; j = 1;

// 2*s2 == j(j-1)
while (j <= m)

s2 = s2 + j;
j = j + 1;

return s2;

pre: (n == m)

// (i == j) & (s1 == s2)
while ((i <= n) || (j <= m))

if (i <= n)
s1 = s1 + i; i = i + 1

if (j <= m)
s2 = s2 + j; j = j + 1

post: (s1 == s2)

• hypersafety verification techniques also face and partially address this
challenge

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

Hypersafety Verification and Programming Assignment Evaluation 2

Property Directed Self Composition Ron et al., CAV 2019

• if some interleaving violates the postcondition, then all of them will

• any self-composition is sufficient to reduce k-safety to safety (e.g. lockstep,
sequential)

• different self-composed programs would require different (safe) inductive
invariants

• find the “right” composition, and the inductive invariant for that

• work in a restricted language L

• explore all compositions, discarding “bad” ones (that cannot have inductive
invariants in L)

Hypersafety Verification and Programming Assignment Evaluation 3

Property Directed Self Composition Ron et al., CAV 2019

• if some interleaving violates the postcondition, then all of them will

• any self-composition is sufficient to reduce k-safety to safety (e.g. lockstep,
sequential)

• different self-composed programs would require different (safe) inductive
invariants

• find the “right” composition, and the inductive invariant for that

• work in a restricted language L fixed, and user-supplied

• explore all compositions, discarding “bad” ones (that cannot have inductive
invariants in L)

Hypersafety Verification and Programming Assignment Evaluation 3

DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

• not all compositions are easy to prove

• the lockstep composition these does not even have a safe inductive
invariant in LIA

Hypersafety Verification and Programming Assignment Evaluation 4

DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

• an “easy” proof if we compose two loop iterations of v1 with one of v2

Hypersafety Verification and Programming Assignment Evaluation 4

DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

z1 == 2*z2,

y1 == 2*y2

z1 == 2*z2-1,

y1 == 2*y2+x2
y1 == y2

{v1}

{v1,v2}

{v2}

Hypersafety Verification and Programming Assignment Evaluation 4

Semantic Self Composition Function

• program semantics as transition systems T = (S,R, F)

• every terminal state (in F) has only one outgoing transition to itself

• f : Sk → P({1..k}) maps each state to a set of copies that run next

• represented as a set of logical conditions, CM for every non-empty subset
M ⊆ {1..k}

• f(s, ..., sk) = M ⇐⇒ (s, ..., sk) |= CM

• f must also be well-defined and fair

Hypersafety Verification and Programming Assignment Evaluation 5

Finding Composition-Invariant Pair

• T f = (Sk, Rf , F k)

• Rf includes a transition from (s, ..., sk) to (s′, ..., s
′
k) iff

• f(s, ..., sk) = M and

• (∀i ∈M. (si, s′i) ∈ R) ∧ (∀i /∈M. si = s′i)

• finding a composition-invariant pair (f, Inv)

• undecidable in general; fix a language

• a set of predicates P and their boolean combinations (LP)

• a transition system has an inductive invariant in LP if and only if its
abstraction using P is safe

Hypersafety Verification and Programming Assignment Evaluation 6

The PDSC Algorithm

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)

Hypersafety Verification and Programming Assignment Evaluation 7

Finding the right composition

A0 A1 A2 Am Am+1 Abad
{..} {..} {..} {..} {..}

disallow the (state, composition) pair reaching bad

Hypersafety Verification and Programming Assignment Evaluation 8

Finding the right composition

A0 A1 A2 Am Am+1 Abad
{..} {..} {..} {..} {..}

{..}

Hypersafety Verification and Programming Assignment Evaluation 8

Finding the right composition

A0 A1 A2 Am Abad
m+1 Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

if all compositions disallowed from a state, mark it as bad

Hypersafety Verification and Programming Assignment Evaluation 8

Finding the right composition

A0 A1 A2 Am Abad
m+1 Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

{..}

and so on ...

Hypersafety Verification and Programming Assignment Evaluation 8

Finding the right composition

A0 Abad
1 Abad

2 Abad
m Abad

m+1 Abad

Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

{..}

until the initial state must be marked bad

return, i.e. no composition-invariant pair exists (in the given language)

Hypersafety Verification and Programming Assignment Evaluation 8

Extending PDSC with Refinement

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)

Hypersafety Verification and Programming Assignment Evaluation 9

Extending PDSC with Refinement

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)

• check if the abstract trace is spurious; if not, return unsafe (and counterexample)

• if yes, add a predicate to remove the spurious transition, and restart the search

Hypersafety Verification and Programming Assignment Evaluation 9

Refinement Adding a predicate

• spurious transition 〈asrc, tr, atgt〉

asrc(X) ∧ tr(X,X′) ; ¬atgt(X′)

p(Y ⊆ X) ∧ asrc(X) ∧ tr(X,X′)⇒ ¬atgt(X′)

p(Y ⊆ X) ∧ asrc(X) ∧ tr(X,X′) ; ⊥

• the problem of abductive inference

∀ ((X ∪ X′) \ Y). asrc(X) ∧ tr(X,X′)⇒ ¬atgt(X′)

∃ ((X ∪ X′) \ Y). asrc(X) ∧ tr(X,X′) ∧ atgt(X′)

• solve for p(Y) using SyGuS and SMT solvers (CVC4 and Z3)

Claim

The refinement ensures progress, i.e. the synthesized predicate eliminates the spurious
transition.

Hypersafety Verification and Programming Assignment Evaluation 10

DoubleSquare Automatically Synthesized Predicates

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

refinement predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

z1 == 2*z2,

y1 == 2*y2

z1 == 2*z2-1,

y1 == 2*y2+x2
y1 == y2

{v1}

{v1,v2}

{v2}

Hypersafety Verification and Programming Assignment Evaluation 11

Implementation

• implemented our ideas in the pdsc tool

• SyGuS (CVC4-1.8) gets nice-looking predicates, but is slower

• QE (Z3) works quicker, but the predicates can be big formulas

• eliminate more variables to get shorter expressions

Hypersafety Verification and Programming Assignment Evaluation 12

Experiments

Hypersafety Verification and Programming Assignment Evaluation 13

Related work in 2019

• Automated Hypersafety Verification (CAV 2019)

• Semantic Program Alignment for Equivalence Checking (PLDI 2019)

• Property Directed Self Composition (CAV 2019)

Hypersafety Verification and Programming Assignment Evaluation 14

Summary

• hypersafety verification/program equivalence/assignment evaluation

• finding correctness proof in an easy-to-prove composition

• need to generalize the discovered predicates

• interpolants from infeasibility proofs

Hypersafety Verification and Programming Assignment Evaluation 15

Thanks for your attention.

Questions?

kumar.madhukar@tcs.com

	Assignment Evaluation and Hypersafety
	Explore their relation
	Property directed self-composition
	Our contribution

