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Assignment Evaluation and Hypersafety Motivation1 ,2

• problem of evaluating an assignment submission, given a reference
implementation

• property: for the same input, the outputs always match

• can be asserted in a composed program, but not easy to verify

• such proofs often require that the functionality of every component
program be captured fully

• background: a k-safety (hypersafety) property is a program safety property
whose violation is witnessed by at least k finite runs of a program (e.g.
determinism is a 2-safety property)

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas
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Assignment Evaluation and Hypersafety Motivation1 ,2

• such proofs often require that the functionality of every component
program be captured fully

sum-v1 (int n)

s1 = 0; i = 1;

// 2*s1 == i(i-1)
while (i <= n)

s1 = s1 + i;
i = i + 1;

return s1;

sum-v2 (int m)

s2 = 0; j = 1;

// 2*s2 == j(j-1)
while (j <= m)

s2 = s2 + j;
j = j + 1;

return s2;

pre: (n == m)

// (i == j) & (s1 == s2)
while ((i <= n) || (j <= m))

if (i <= n)
s1 = s1 + i; i = i + 1

if (j <= m)
s2 = s2 + j; j = j + 1

post: (s1 == s2)

• hypersafety verification techniques also face this challenge

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas

Hypersafety Verification and Programming Assignment Evaluation 2



Assignment Evaluation and Hypersafety Motivation1 ,2

• such proofs often require that the functionality of every component
program be captured fully

sum-v1 (int n)

s1 = 0; i = 1;

// 2*s1 == i(i-1)
while (i <= n)

s1 = s1 + i;
i = i + 1;

return s1;

sum-v2 (int m)

s2 = 0; j = 1;

// 2*s2 == j(j-1)
while (j <= m)

s2 = s2 + j;
j = j + 1;

return s2;

pre: (n == m)

// (i == j) & (s1 == s2)
while ((i <= n) || (j <= m))

if (i <= n)
s1 = s1 + i; i = i + 1

if (j <= m)
s2 = s2 + j; j = j + 1

post: (s1 == s2)

• hypersafety verification techniques also face and partially address this
challenge

1Jude Anil, Sumanth Prabhu, M, and R Venkatesh. 2020. Using hypersafety verification for proving correctness of
programming assignments. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing: New Ideas and Emerging Results (ICSE-NIER ’20).
2ongoing work with Akshatha Shenoy, Sumanth Prabhu, Ron Shemer, and Mandayam Srivas
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Property Directed Self Composition Ron et al., CAV 2019

• if some interleaving violates the postcondition, then all of them will

• any self-composition is sufficient to reduce k-safety to safety (e.g. lockstep,
sequential)

• different self-composed programs would require different (safe) inductive
invariants

• find the “right” composition, and the inductive invariant for that

• work in a restricted language L

• explore all compositions, discarding “bad” ones (that cannot have inductive
invariants in L)
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Property Directed Self Composition Ron et al., CAV 2019

• if some interleaving violates the postcondition, then all of them will

• any self-composition is sufficient to reduce k-safety to safety (e.g. lockstep,
sequential)

• different self-composed programs would require different (safe) inductive
invariants

• find the “right” composition, and the inductive invariant for that

• work in a restricted language L fixed, and user-supplied

• explore all compositions, discarding “bad” ones (that cannot have inductive
invariants in L)

Hypersafety Verification and Programming Assignment Evaluation 3



DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

• not all compositions are easy to prove

• the lockstep composition these does not even have a safe inductive
invariant in LIA
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DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

• an “easy” proof if we compose two loop iterations of v1 with one of v2
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DoubleSquare An example

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

user-supplied predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

z1 == 2*z2,

y1 == 2*y2

z1 == 2*z2-1,

y1 == 2*y2+x2
y1 == y2

{v1}

{v1,v2}

{v2}
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Semantic Self Composition Function

• program semantics as transition systems T = (S,R, F )

• every terminal state (in F ) has only one outgoing transition to itself

• f : Sk → P({1..k}) maps each state to a set of copies that run next

• represented as a set of logical conditions, CM for every non-empty subset
M ⊆ {1..k}

• f(s, ..., sk) = M ⇐⇒ (s, ..., sk) |= CM

• f must also be well-defined and fair
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Finding Composition-Invariant Pair

• T f = (Sk, Rf , F k)

• Rf includes a transition from (s, ..., sk) to (s′, ..., s
′
k) iff

• f(s, ..., sk) = M and

• (∀i ∈M. (si, s′i) ∈ R) ∧ (∀i /∈M. si = s′i)

• finding a composition-invariant pair (f, Inv)

• undecidable in general; fix a language

• a set of predicates P and their boolean combinations (LP )

• a transition system has an inductive invariant in LP if and only if its
abstraction using P is safe
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The PDSC Algorithm

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)
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Finding the right composition

A0 A1 A2 Am Am+1 Abad
{..} {..} {..} {..} {..}

disallow the (state, composition) pair reaching bad
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Finding the right composition

A0 A1 A2 Am Am+1 Abad
{..} {..} {..} {..} {..}

{..}
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Finding the right composition

A0 A1 A2 Am Abad
m+1 Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

if all compositions disallowed from a state, mark it as bad
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Finding the right composition

A0 A1 A2 Am Abad
m+1 Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

{..}

and so on ...
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Finding the right composition

A0 Abad
1 Abad

2 Abad
m Abad

m+1 Abad

Abad

Abad

Abad

{..} {..} {..} {..} {..}

{..}

{..}

{..}

until the initial state must be marked bad

return, i.e. no composition-invariant pair exists (in the given language)
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Extending PDSC with Refinement

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)
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Extending PDSC with Refinement

• initialize the composition function to lockstep (default)

• abstract T f with the predicates P

• check if it is possible to start from pre and violate the post

• if not, then proved

• else, take the trace, modify composition, and try again

• if no more compositions left to try

• return (language is insufficient)

• check if the abstract trace is spurious; if not, return unsafe (and counterexample)

• if yes, add a predicate to remove the spurious transition, and restart the search
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Refinement Adding a predicate

• spurious transition 〈asrc, tr, atgt〉

asrc(X) ∧ tr(X,X′) ; ¬atgt(X′)

p(Y ⊆ X) ∧ asrc(X) ∧ tr(X,X′)⇒ ¬atgt(X′)

p(Y ⊆ X) ∧ asrc(X) ∧ tr(X,X′) ; ⊥

• the problem of abductive inference

∀ ((X ∪ X′) \ Y). asrc(X) ∧ tr(X,X′)⇒ ¬atgt(X′)

∃ ((X ∪ X′) \ Y). asrc(X) ∧ tr(X,X′) ∧ atgt(X′)

• solve for p(Y) using SyGuS and SMT solvers (CVC4 and Z3)

Claim

The refinement ensures progress, i.e. the synthesized predicate eliminates the spurious
transition.
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DoubleSquare Automatically Synthesized Predicates

doubleSquare-v1(x)
int z, y=0;
z = 2*x;

while (z>0)
z -= 1;
y = y+x;

return y;

doubleSquare-v2(x)
int z, y=0;
z = x;

while (z>0)
z -= 1;
y = y+x;

y = 2*y
return y;

pre:
(x1 > 0) & (x2 > 0)
(y1 == 0) & (y2 == 0)
(z1 == 2*x1) & (z2 == x2)
(x1 == x2)

post: (y1 == y2)

refinement predicates:
(z1 == 2*z2),(z1 == 2*z2-1)
(y1 == 2*y2),(y1 == 2*y2+x2)

z1 == 2*z2,

y1 == 2*y2

z1 == 2*z2-1,

y1 == 2*y2+x2
y1 == y2

{v1}

{v1,v2}

{v2}
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Implementation

• implemented our ideas in the pdsc tool

• SyGuS (CVC4-1.8) gets nice-looking predicates, but is slower

• QE (Z3) works quicker, but the predicates can be big formulas

• eliminate more variables to get shorter expressions
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Experiments
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Related work in 2019

• Automated Hypersafety Verification (CAV 2019)

• Semantic Program Alignment for Equivalence Checking (PLDI 2019)

• Property Directed Self Composition (CAV 2019)
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Summary

• hypersafety verification/program equivalence/assignment evaluation

• finding correctness proof in an easy-to-prove composition

• need to generalize the discovered predicates

• interpolants from infeasibility proofs
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Thanks for your attention.

Questions?

kumar.madhukar@tcs.com
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