
Non-definability of languages by generalized first-order formulas
over (N,+)

Andreas Krebs1 and Sreejith A V2

1 Wilhelm-Schickard Institut, Universtität Tübingen, Germany
2 Institute of Mathematical Sciences, Chennai, India

Abstract. We consider first-order logic with monoidal quantifiers over words. We show that all lan-
guages with a neutral letter, definable using the addition predicate are also definable with the order
predicate as the only numerical predicate. Let S be a subset of monoids. Let LS be the logic closed
under quantification over the monoids in S, and N be the class of neutral letter languages. Then we
show that

LS [<,+] ∩N = LS [<] ∩N

Our result can be interpreted as the Crane Beach conjecture to hold for the logic LS [<,+]. As a corollary
of our result we get the result of Roy and Straubing that FO+MOD[<,+] collapses to FO+MOD[<]. For
cyclic groups, we answer an open question of Roy and Straubing, proving that MOD[<,+] collapses to
MOD[<]. Our result also shows that multiplication as a numerical predicate is necessary for Barrington’s
theorem to hold and also to simulate majority quantifiers.
All these results can be viewed as separation results for highly uniform circuit classes. For example we
separate FO[<,+]-uniform CC0 from FO[<,+]-uniform ACC0.

1 Introduction

Consider a language with a “neutral letter”, i.e. a letter which can be inserted or deleted from any word in
the language without changing its membership. The neutral letter concept has turned out to be useful for
showing non-expressibility results. It had been used for showing super linear lower bounds for bounded-width
branching programs [4], super linear wires in circuit classes [12] and in communication complexity [9]. But
it is mostly known in the context of the Crane Beach conjecture proposed in [2]. There it is conjectured that
first order logic with arbitrary numerical predicates (denoted as arb) will collapse to first order logic with
only linear ordering in the presence of a neutral letter. The idea is that, in the presence of a neutral letter,
formulas cannot rely on the precise location of input letters and hence numerical predicates will be of little
use. Let N denote the class of languages with neutral letters. Let S be a subset of monoids and LS be the
logic closed under quantification, where the quantifiers are Lindström quantifiers over some monoid from S.
Then the Crane Beach conjecture says that

LS [arb] ∩N = LS [<] ∩N.

Nevertheless the conjecture was refuted by Barrington et. al [2]. In fact they show that the conjecture does
not hold for the logic FO[<,+, ∗], i.e. first order logic (S consists of only the existential quantifier) using
addition, and multiplication relation. In the same paper, the authors show that the conjecture hold for
various other logics. The Boolean closure of the Σ1-fragment of FO[arb] does satisfy the conjecture. That is
B(Σ1)[arb]∩N = B(Σ1)[<]∩N. Lautemann, Tesson and Thérien [16] considered quantifiers which can count
modulo a prime p (called MODp). They show that B(Σ0,p

1)[arb]∩N = B(Σ0,p
1)[<]∩N. This is equivalent to

showing that MODp[arb]∩N = MODp[<]∩N. Benedikt and Libkin [8], in the context of collapse results in
database theory, had shown that first order logic with only addition satisfies the Crane Beach conjecture. A
different proof of the result can be found in [2].

We show that this can be generalized to any monoid quantifier. Let S be a subset of monoids. Consider
the logic LS where the quantifiers are Lindström quantifiers whose languages are word problems of monoids

in S. Our main result (Theorem 2) shows that the Crane Beach conjecture hold for the logic LS [<,+]. That
is:

LS [<,+] ∩N = LS [<] ∩N.

If S is the U1 monoid, then the Theorem is equivalent to the result of Benedikt and Libkin. Roy and
Straubing [22] (used ideas of Benedikt and Libkin to) show that FO+MOD[<,+] in the presence of neutral
letters collapse to FO+MOD[<]. In the paper they asked whether MOD[<,+] satisfy Crane Beach conjecture?
This is answered by a corollary of our Theorem.

Our results can also be viewed from the perspective of descriptive complexity of circuit classes. The books
[11], [29] show the close connection between logics with monoid quantifiers and circuit classes. We know that
the set of languages accepted by uniform-AC0 circuits are exactly those definable by first order logic which
uses order, addition and multiplication relations. Similarly CC0 (constant depth, polynomial size circuits
with MOD-gates) corresponds to MOD[<,+, ∗], ACC0 corresponds to FO+MOD[<,+, ∗], TC0 corresponds
to MAJ[<,+, ∗], and NC1 corresponds to GROUP[<,+, ∗] (The “group quantifier” evaluates over a finite
group). It is a well known result that AC0 is separated from ACC0 [10], but relationships between most
other classes are open. For example, we do not know whether CC0 is different from ACC0. In fact we do
not know whether MOD6[<,+, ∗] contains uniform-AC0. This explains why the Crane Beach conjecture for
prime modulo quantifiers [16], using arbitrary predicates, cannot be easily extended to composite modulo
quantifiers.

We look at these separation questions from the descriptive complexity perspective. As a first step, one
can ask the question of separating the logics when the multiplication relation is not available. That is, can
one separate MOD[<,+] from FO+MOD[<,+]? Is GROUP[<,+] different from FO+MOD[<,+]?

Behle and Lange [7] give a notion of interpreting LS [<,+] as highly uniform circuit classes. Our results
therefore can be summarized as, every FO[<,+] uniform constant depth polynomial size circuit with gates
that compute a product in S and which recognize a language with a neutral letter can be made FO[<]-
uniform.

As a consequence of our Theorem 2 we are able to separate these uniform versions of circuit classes. For
example: The theorem states that MOD[<,+] definable languages with a neutral letter are also definable in
MOD[<]. Since MOD[<] cannot simulate existential quantifiers [26] we have that FO[<,+] and MOD[<,+]
are incomparable. In fact we show that no group quantifier can simulate existential quantifier if only addition
is available. Our another corollary gives an alternate proof of the known result [22] that FO+MODm[<,+]
cannot count modulo a prime p, which does not dividem. Another corollary shows that the majority quantifier
cannot be simulated by group quantifiers if multiplication is not available, thus separating MAJ[<,+] from
FO+GROUP[<,+]. Barrington’s theorem [1] says that word problems over any finite group can be defined
by the logic which uses only the S5 group quantifier (the group whose elements are the set of all permutations
over 5 elements) if addition and multiplication predicates are available. Our result show multiplication is
necessary for Barrington’s theorem to hold. In other words S5 cannot define word problems over S6 if only
addition is available.

Non expressibility results for various logics which uses addition and a variety of quantifiers has been
considered earlier. Lynch [19] showed that FO[<,+] cannot count modulo any number. Nurmonen [21] and
Niwiński and Stolboushkin [25] looked at logics with counting quantifiers equipped with numerical predicates
of form y = px and a linear ordering. Ruhl [23], Schweikardt [24], Lautemann et.al. [15], Lange [14] all show
the limited expressive power of addition in the presence of majority quantifiers. Behle, Krebs and Reifferscheid
[6, 5] show that non-solvable groups are not definable in the two variable fragment of MAJ [<].

For the purpose of proof we work over infinite strings which contain finite number of non-neutral letters.
Our general proof strategy is similar to Benedikt and Libkin [8] or Roy and Straubing [22] and consists of
three main steps.

1. Given a formula φ ∈ LS [<,+], we give an infinite set D and an “active domain formula” φ′ ∈ LS [<,+]
such that for all words w whose non neutral positions belong to D we have w � φ ⇔ w � φ′. Active
domain formulas quantify only over non-neutral letter positions. Our major contribution (Theorem 14)
is showing this step.

2

2. We give another infinite set S ⊆ D and an active domain formula ψ ∈ LS [<] such that for all words w
whose non neutral positions belong to S we have w � φ′ ⇔ w � ψ. This step follows from an application
of Ramsey theory (Theorem 15).

3. Active domain formulas in LS [<] with neutral letters will work on every domain. This is an easy obser-
vation given by Lemma 16.

Finally using these three steps we prove our main theorem.
The main step is to show that we can build an active domain formula. Hence we need to show how

to simulate a quantifier by an active domain formula. In the case of FO[<,+], the quantifiers, considered
as Lindström quantifiers, have a commutative and idempotent monoid. Hence neither the order in which
the quantifier runs over the positions of the word is important, nor does it matter if positions are queried
multiple times. In Roy and Straubing this idea was extended in such a way that in the simulation of the
MOD quantifier (again a commutative monoid), every position is taken into account exactly once. In their
construction while replacing a MOD quantifier they need to add additional FO quantifiers and hence their
construction only allows to replace a MOD[<,+] formula by an active domain FO + MOD[<,+] formula.
In this paper, we construct a formula that takes every position into account exactly once and in the correct
order. Moreover we do not introduce any new quantifier, but use only the quantifier that is replaced. This
enables us to show the Crane Beach conjecture for logics whose quantifiers have a non-commutative monoid
or are groups. For example MOD[<,+], GROUP[<,+], and FO +GROUP[<,+].

In contrast to previous work, we do not construct an equivalent active domain formula, but only a formula
that is equivalent for certain domains. We show that it is in general sufficient to show this for one infinite
domain. We also introduce a combinatorial structure called Sorting Tree which can be of interest on its own.
Yet another contribution is to use inverse elements of groups to merge two sorted lists of numbers.
We present our main theorem and its corollaries in Section 3 followed by a section with the proof of Theorem
14. Section 5 which is our main contribution shows how to replace group quantifiers by its active domain
version.

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set of all finite words over Σ is denoted by Σ∗, the set of all
right infinite words is denoted by Σω. Let Σ∞ = Σ∗ ∪Σω. Consider a language L ⊆ Σ∞ and a letter λ ∈ Σ.
We say that λ is a neutral letter for L if for all u, v ∈ Σ∞ we have that uλv ∈ L ⇔ uv ∈ L. We denote the
set of all languages with a neutral letter by N.

For a word w ∈ Σ∞ the notation w(i) denotes the ith letter in w, i.e. w = w(0)w(1)w(2) For a word
w in a language L with neutral letter λ, we define the non-neutral positions nnp(w) of w to be the set of all
positions which do not have the neutral letter.

A monoid is a set closed under a binary associative operation and has an identity element. All monoids
we consider except for Σ∗ and Σ∞ will be finite. A monoid M and S ⊆ M defines a word problem. Its
language is composed of words w ∈ M∗, such that when the elements of w are multiplied in order we get
an element in S. We say that a monoid M divides a monoid N if there exists a submonoid N ′ of N and a
surjective morphism from N ′ to M . A monoid M recognizes a language L ⊆ Σ∗ if there exists a morphism
h : Σ∗ → M and a subset T ⊆ M such that L = h−1(T). It is known that finite monoids recognize exactly
regular languages [26]. We denote by M the set of all finite monoids, G ⊂ M the set of all finite groups
and MOD the set of all finite cyclic group. We denote by U1 the monoid consisting of elements {0, 1} under
multiplication. For a monoid M , the element 1 ∈ M will denote its identity element. We also use the block
product of monoids, whose definition can be found in [26].

Given a formula φ with free variables x1, . . . , xk, we write w, i1, . . . , ik |= φ if w is a model for the formula
φ when the free variables xj is assigned to ij for j = 1, . . . , k. We abuse notation and let c ∈ Σ also be
the unary predicate symbols of the logic we consider. That is w, i |= c(x) iff w(i) = c. Let V be a set of
variables, R be a set of numerical predicates and S ⊆ M. We define the logic LS [R] to be built from the

3

unary predicate symbols c, where c ∈ Σ, the binary predicate {=}, the predicates in R, the variable symbols
V, the Boolean connectives {¬,∨,∧}, and the monoid quantifiers Qm

M , whereM ∈ S is a monoid and m ∈M .
We also identify the logic class LS [R] with the set of all languages definable in it.

Our definition of monoid quantifiers is a special case of Lindström quantifiers [18]. The formal definition
of a monoid quantifier [3] is as follows. Let M = {m1, . . . ,mK , 1} be a monoid with K + 1 elements. For
an m ∈ M , the quantifier Qm

M is applied on K formulas. Let x be a free variable and φ1(x), . . . , φK(x) be
K formulas. Then w |= Qm

Mx〈φ1(x), . . . , φK(x)〉 iff the word u when multiplied gives the element m, i.e.
∏

i u(i) = m, where the ith letter of u, 0 ≤ i < |w|, is

u(i) =



























m1 if w, i |= φ1
m2 if w, i |= ¬φ1 ∧ φ2

...
mK if w, i |= ¬φ1 ∧ · · · ∧ ¬φK−1 ∧ φK

1 otherwise

The following “shorthand” notation is used to avoid clutter. We denote by Qm
Mx φ 〈α1, . . . , αK〉, the

formula Qm
Mx〈φ∧α1, . . . , φ∧αK〉. Informally, this relativizes the quantifier to the positions where φ is true,

by multiplying the neutral element in all other places.
Consider the monoid U1. It is easy to see that the word problem defined by U1 and the set {0} defines

the regular language 1∗0{0, 1}∗. Then Q0
U1

is same as the existential quantifier ∃, since any formula ∃xφ is
equivalent to Q0

U1
x 〈φ〉. So the logic LU1

[<] denotes first-order logic, FO[<]. Let Cq stand for the cyclic group
with q elements. Then the quantifiers Q1

Cq
corresponds to modulo quantifiers [28]. Thus LMOD[<] corresponds

to all regular languages whose syntactic monoids are solvable groups [26]. For a sentence φ ∈ LS [R] we define
L(φ) = {w | w � φ}. The following result gives an algebraic characterization for the logic LS [<].

Lemma 1 ([26]). Let S ⊆ M. Let S′ be the smallest set containing S and is closed under block products.
Let L ⊆ Σ∗ such that M is the smallest monoid which recognizes L. Then L is definable in LS [<] iff M
divides a monoid in S′.

3 Results

Let S ⊆ M be any set of monoids. We show that the Crane Beach conjecture is true for the logic LS [<,+].

Theorem 2 (Main Theorem). Let S ⊆ M. Then

LS [<,+] ∩N = LS [<] ∩N

The proof of this theorem is given in Section 4.
The above Theorem give us the following corollaries.

Corollary 3. All languages with a neutral letter in LM[<,+] are regular.

Proof. By Theorem 2 we know that all languages with a neutral letter in LM[<,+] can be defined in LM[<]
which by Lemma 1 is the set of all regular languages. ⊓⊔

Recall that a monoid M divides a monoid N if M is a morphic image of a submonoid of N .

Corollary 4. Let S ⊆ G. Let G be a simple group that does not divide any monoid M in S. Then the word
problem over G is not definable in LS [<,+].

Proof. The word problem over G has a neutral letter. The result now follows from Theorem 2 and Lemma
1. ⊓⊔

4

The majority quantifier, Maj x φ(x) is given as follows.

w � Maj x φ(x) ⇔ |{i | w � φ(i), i ≤ |w|}| >
|w|

2

MAJ[<] denotes the logic closed under majority quantifiers. It is known that the majority quantifier can be
simulated by the non-solvable group S5 if both multiplication and addition are available [29]. We show that
multiplication is necessary to simulate majority quantifiers.

Corollary 5. MAJ[<] * LM[<,+].

Proof. Consider the language L ⊆ {a, b, c}∗ consisting of all words with an equal number of a’s and b’s. L
can be shown to be definable in MAJ[<]. Also note that c is a neutral element for L. By Corollary 3, and
the fact that L is nonregular, we know that L is not definable in LM[<,+]. ⊓⊔

Barrington’s theorem [1] says that the word problem of any finite group can be defined in the logic
LS5

[<,+, ∗]. The following theorem shows that multiplication is necessary for Barrington’s theorem to hold.

Corollary 6. The word problem over the group S6 is not definable in LS5
[<,+]. Infact there does not exist

any one finite monoid M such that all regular languages can be defined in LM [<,+].

Proof. A6 is a simple subgroup of S6, which does not divide S5. From Corollary 4 it follows that the word
problem over S6 is not definable in LS5

[<,+].
For any finite monoid M , there exists a simple group G such that G does not divide M and hence the word
problem over G is not definable in LM [<,+]. ⊓⊔

Let Lp be the set of all words w ∈ {0, 1}∗ such that the number of occurrences of 1 in w is equal to 0
(mod p). Then we get the result in [22] that Lp is not definable in FO+MODm[<,+], if p is a prime which
does not divide m.

Corollary 7 ([22]). If p is a prime which does not divide m, then Lp is not definable in FO+MODm[<,+].

Proof. Let Lp be definable in FO+MODm[<,+]. Since 0 is a neutral letter in Lp, Theorem 2 says Lp is also
definable in FO +MODm[<]. Due to Lemma 1 and [26], this is a contradiction. ⊓⊔

It is an open conjecture whether the language 1∗ can be accepted by the circuit complexity class CC0

[26]. It is also known that languages accepted by CC0 circuits are exactly those which are definable by
LMOD[<,+, ∗] formulas [29].

To progress in this direction Roy and Straubing [22] had posed the question of whether one can show
that 1∗ /∈ LMOD[<,+]. Below we show that this is the case.

Corollary 8. 1∗ /∈ LMOD[<,+]. In fact 1∗ /∈ LG [<,+].

Proof. The minimal monoid which can accept 1∗ is U1 and clearly the language is in N. By Theorem 2 if
there is a formula in LG [<,+] which can define 1∗, then LG [<] can also define 1∗. From Lemma 1 it follows
that the monoid U1 divides a group. But this is a contradiction [26]. ⊓⊔

Behle and Lange [7] give a notion of interpreting LS [<,+] as highly uniform circuit classes. As a conse-
quence we can interpret the following results as a separation of the corresponding circuit classes.

Corollary 9. The following separation results hold, for all m > 1

– FO[<,+] 6⊆ MOD[<,+].
– MODm[<,+] 6⊆ FO[<,+].
– FO[<,+] (FO+MODm[<,+] (FO+MOD[<,+]
– FO+MOD[<,+] (FO+GROUP[<,+]
– MAJ[<,+] 6⊆ FO+GROUP[<,+]

5

Let S be a set of monoids such that, given a monoid M , it is decidable if M divides a block product
of monoids in S. Then, given a regular language L, it is decidable if L ∈ LS [<]. Together with our main
theorem we get that it is decidable if L ∈ LS [<,+].

Corollary 10. Let S be a set of monoids such that, given a monoid M , it is decidable if M divides a block
product of monoids in S. Then, given a regular language L, it is decidable if L ∈ LS [<,+].

For FO+MOD[<,+] this was proved in [22]. Here we show the claim for the special case when S = MOD.

Corollary 11. Given a regular language L, the question whether L is definable in MOD[<,+] is decidable.

4 Proof of the Main Theorem

In this section we handle the general proof steps as in Libkin or Roy and Straubing of removing the plus
predicate from the formula in the presence of a neutral letter. We show that all these results go through even
in the presence of general Lindström quantifiers. The new crucial step is Lemma 12 where we show how to
convert a group quantifier to an active domain formula without introducing any other quantifiers. The proof
of this lemma is deferred to the next section.

Let S ⊆ M be any nonempty set. To prove Theorem 2 we will consider the more general logic, LS [<
,+, 0, {≡q: q > 1}] over the alphabet Σ. In this logic + is a binary function, 0 is a constant, and a ≡q b
means q divides b− a. The reason for introducing these new relations (which are definable using +) is to use
a quantifier elimination procedure. All languages recognized by this logic are in LS [<,+].

The formulas we consider will usually define languages with a neutral letter. Let an active domain formula
over a letter λ ∈ Σ be a formula where all quantifiers are of the form: Qm

Mx ¬λ(x)〈φ1, . . . , φK〉. That is the
quantifiers, quantify only over the “active domain”, the positions which does not contain the letter λ. For
the purpose of the proof we assume that the neutral letter language defined by a formula φ ∈ LS [<,+] is a
subset of Σ∗λω. The idea is to work with infinite words, where the arguments are easier, since the variable
range is not bounded by the word length.

For r ∈ N we define the set Dr = {ri | 0 < i ∈ N}. We say that a formula φ(x1, . . . , xt) ∈ LS [<,+]
collapses to φ′, if φ′ is an active domain formula in LS [<,+] and there exists an Rφ ∈ N such that for all
r ≥ Rφ, w ∈ Σ∗λω with nnp(w) ⊆ Dr and for all a1, . . . , at ∈ N we have that

w |= φ(a1, . . . , at) ⇔ w |= φ′(a1, . . . , at)

In the above definition we say that Rφ collapse φ to φ′.
The results by Benedikt and Libkin [8], and Roy and Straubing [22] show that for all formulas φ ∈

LMOD∪U1
[<,+] there exists an active domain formula φ′ in that logic, such that for all words w ∈ Σ∗λω,

w � φ ⇔ w � φ′. They assume no restriction on the non-neutral positions of w. Observe that our collapse
result is different from theirs. We show that if we consider only words, whose non-neutral positions are in
Dr, then any formula φ ∈ LS [<,+] is equivalent to the active domain formula φ′ ∈ LS [<,+]. That is, we
are not concerned about the satisfiability of those words with non-neutral positions not in Dr.

We show that formulas with a group quantifier, G ∈ S can be collapsed.

Lemma 12. Let φ = Qm
Gz〈φ1, . . . , φK〉 be in LS [<,+]. Assume formulas φ1, . . . , φK collapse. Then φ col-

lapses to an active domain formula φ′.

The proof of Lemma 12 will be given in Section 5. Benedikt and Libkin [8] gives a similar theorem for
the monoid U1 (the existential quantifier).

Lemma 13 ([8]). Let φ = Qm
U1
z〈φ1, . . . , φK〉 be a formula in LS [<,+]. Let us assume that formulas

φ1, . . . φK collapse. Then φ collapses to an active domain formula φ′.

6

Recall the 3 steps for proving the main theorem given in Introduction. The following theorem proves the
first step.

Theorem 14. Let φ ∈ LS [<,+]. Then there exists an active domain formula φ′ ∈ LS [<,+] such that φ
collapses to φ′.

Proof. Let φ ∈ LS [<,+]. We first claim that we can convert φ into a formula which uses only groups and U1

as quantifiers. This follows from the Krohn-Rhodes decomposition theorem for monoids that every monoid
can be decomposed into block products over groups and U1. This decomposition can then be converted back
into a formula using the groups and U1 as quantifiers [26].

So without loss of generality we can assume φ has only group or U1 quantifiers. The proof is by induction
on the quantifier depth. For the base case, let φ be a quantifier free formula. It is an active domain formula
and therefore the claim holds. Let the claim be true for all formulas with quantifier depth < d. Lemma
12 and Lemma 13 show that the claim is true for formulas of type φ = Qm

Mz〈φ1, . . . , φK〉 with quantifier
depth d, when M is a group or U1 respectively. We are now left with showing that the claim is closed under
conjunction and negation. So assume that formulas φ1, φ2 collapse to φ′1, φ

′
2 respectively. That is there exist

Rφ1
,Rφ2

∈ N such that Rφ1
collapses φ1 to φ′1 and Rφ2

collapses φ2 to φ′2. Let R = max{Rφ1
,Rφ2

}. Then
it is easy to see that R collapses φ1 ∧ φ2 to φ′1 ∧ φ

′
2 and Rφ1

collapses ¬φ1 to ¬φ′1. ⊓⊔

We have shown above that all formulas in LS [<,+] can be collapsed to active domain formulas. Now using
a Ramsey type argument we show that addition is useless, giving us a formula in LS [<]. This corresponds
to the second step in our three step proof strategy.

Let R be any set of relations on N and let φ(x1, . . . , xt) be an active domain formula in LS [R]. We say
that φ has the Ramsey property if for all infinite subsets X of N, there exists an infinite set Y ⊆ X and an
active domain formula ψ ∈ LS [<] that satisfies the following conditions. If w ∈ Σ∗λω and nnp(w) ⊆ Y , then
for all a1, . . . , at ∈ Y ,

w � φ(a1, . . . , at) ⇔ w � ψ(a1, . . . , at)

The Ramsey property for first order logic has been considered by Libkin [17]. We show that these results
can be extended to our logic.

Theorem 15. Let R be a set of relations on N. Every active domain formula in LS [R] satisfies the Ramsey
property.

Proof. Let φ ∈ LS [R] be a formula. We now prove by induction on the structure of the formula. Let
P (x1, . . . , xk) be a term in φ. We assume without loss of generality that for all i 6= j, xi 6= xj . Now consider
the infinite complete hypergraph, whose vertices are labelled by numbers from X and whose edges are k
tuple of vertices. Let i1, . . . , ik be some permutation of numbers from 1 to k. Consider the edge formed by
the vertices v1 < v2 < · · · < vk. We color this edge by the formula xi1 < xi2 < · · · < xik if P (vi1 , . . . , vik) is
true. Observe that each edge can have multiple colors and therefore the total number of different colorings
possible is k!. Ramsey theory gives us that there exists an infinite set Y ⊆ X, such that the induced subgraph
on the vertices in Y will have a monochromatic color, ie. all the edges will be colored using the same color.
Let us assume that the edges in Y are colored x1 < x2 < · · · < xk. Then for all a1, . . . , at ∈ Y

a1, . . . , at |= R(x1, . . . , xk) ⇔ a1, . . . , at |= x1 < x2 < · · · < xk

This shows that P (x1, . . . , xk) satisfies the Ramsey property and thus all atomic formulas satisfy the Ramsey
property. We now show that Ramsey property is preserved while taking Boolean combination of formulas.
Consider the formula φ1(x1, . . . , xk) ∧ φ2(x1, . . . , xk). We know that by induction hypothesis there exists a
formula ψ1 and an infinite set X such that for all a1, . . . , at ∈ X, w |= φ1(a1, . . . , at) ⇔ w |= ψ(a1, . . . , at).
We can now find an infinite set Y ⊆ X and a formula ψ2 such that the Ramsey property holds for the
formula φ2. Therefore for all a1, . . . , at ∈ Y

w, a1, . . . , ak � φ1 ∧ φ2 ⇔ w, a1, . . . , ak � ψ1 ∧ ψ2

7

Similarly we can show that the Ramsey property holds for disjunctions and negations. We need to now show
that active domain quantification also preserves Ramsey property. So let X be an infinite subset of N and
let

φ(x) = Qm
Mz ¬λ(z) 〈φ1(z,x), . . . , φK(z,x)〉

be a formula in LS [R]. By induction hypothesis we know that there exists an infinite set Y1 ⊆ X and
an active domain formula ψ1 ∈ L[<] such that for all a ∈ Y t

1 the Ramsey property is satisfied. That is
w |= φ1(a) ⇔ w |= ψ1(a). Now for φ2, using the infinite set Y1 we can find an infinite set Y2 ⊆ Y1 and a
formula ψ2 satisfying the Ramsey property. Continuing like this will give us a set YK and formulas ψ1, . . . , ψK

such that ∀j ≤ K and for all w ∈ Σ∗λω with nnp(w) ⊆ YK , we have that ∀b ∈ YK ,a ∈ Y t
K , w � φj(b,a) ⇔

w � ψj(b,a). Hence we also have that ∀j ≤ K

{b ∈ YK | w � φj(b,a)} = {b ∈ YK | w � ψj(b,a)}

Therefore for the formula ψ = Qm
Mz ¬λ(z) 〈ψ1, . . . , ψK〉, we have ∀w where nnp(w) ⊆ YK and a1, . . . , at ∈ YK

that
w � φ(a1, . . . , at) ⇔ w � ψ(a1, . . . , at)

Observe that ψ is an active domain formula in LS [<]. ⊓⊔

Now we show the third step of our three step proof strategy.

Lemma 16. Every active domain sentence in LS [<] define a language with a neutral letter.

Proof. Let φ ∈ LS [<] be an active domain formula over letter λ ∈ Σ. Let w ∈ Σω. Let w′ ∈ Σω got by
inserting letter λ in w at some positions. Let n1 < n2 < . . . belong to nnp(w) and m1 < m2 < . . . be in
nnp(w′). Let ρ : nnp(w) → nnp(w′) be the bijective map ρ(ni) = mi. We show that for any subformula ψ
of φ and any t ∈ nnp(w)s, we have that w, t � ψ ⇔ w′, ρ(t) � ψ. The claim holds for the atomic formula
x > y, because ni > nj iff ρ(ni) > ρ(nj) for an i, j. Similarly the claim also hold for all other atomic formulas
x < y, x = y and a(x) for an a ∈ Σ. The claim remains to hold under conjunctions, negations and active
domain quantifications. Hence w |= φ⇔ w′ |= φ. This shows that λ is a neutral letter for L(φ). ⊓⊔

Now we can prove our main theorem.

Proof (Proof of Theorem 2). Let φ ∈ LS [<,+], such that L(φ) is a language with a neutral letter, λ. By
Theorem 14 there exists an active domain sentence φ′ ∈ LS [<,+] over λ and a set DR such that R collapses φ
to φ′. Theorem 15 now gives an active domain formula ψ ∈ LS [<] and an infinite set Y ⊆ DR. We now show
that L(φ) = L(ψ). Let w ∈ Σ∗λω. Consider the word w′ ∈ Σ∗λω got by inserting the neutral letter λ in w in
such a way that nnp(w′) ⊆ Y . Since L(φ) is a language with a neutral letter we have that w |= φ⇔ w′

� φ.
From Theorem 14 and Theorem 15 we get w′

� φ ⇔ w′
� φ′ ⇔ w′

� ψ. Finally as shown in Lemma 16, ψ
defines a language with a neutral letter and hence w′ |= ψ ⇔ w |= ψ. ⊓⊔

5 Proof of Lemma 12

In this section we show how to replace a group quantifier by an active domain formula. Here we make use of
the fact that we can a priory restrict our domain as shown in the previous section.

Recall that φ = Qm
Gz〈φ1, . . . , φK〉 and G = {m1, . . . ,mK , 1}. We know that for all i ≤ K, there exists

Rφi
and a formula φ′i such that Rφi

collapse φi to φ
′
i. Then clearly max{Rφi

} collapse φi to φ
′
i for all i ≤ K.

So without loss of generality we assume φis are active domain formulas.
Before we go in the details we will give a rough overview of the proof idea. The group quantifier will

evaluate a product
∏

j u(j) where u(j) is a group element that depends on the set of i such that w, j |= φi.
So we start and analyze the sets Ji = {j | w, j |= φi}. Since the formulas φi are active domain formulas,
we will see that there exists a set of intervals such that inside an interval the set Ji is periodic. Boundary

8

points for these intervals are either points in the domain, or linear combinations of these. In the construction
of the active domain formula for φ we will show how to iterate over all these boundary points in a strictly
increasing order. An active domain quantifier can only iterate over active domain positions, hence we will
need nested active domain quantifiers, and a way how to “encode” the boundary points by tuples of active
domain positions in a unique and order preserving way. Additionally we need to deal with the periodic
positions inside the intervals, without being able to compute the length of such an interval, or even check if
the length is zero. Here will make use of the inverse elements that always exist in groups.

We start by analyzing the intervals which occur. We will pick an Rφ ≥ max{Rφi
} to collapse the formula

φ. During the course of the proof we will require Rφ to be greater than a few others constants, which will
be specified then. But always observe that Rφ will depend only on φ.

Since we consider a fixed set S for the rest of the paper, we will write L[<,+] for the logic LS [<,+, 0, {≡q:
q > 1}].

5.1 Intervals and Linear Functions

We first show that every formula ψ with at least one free variable has a normal form.

Lemma 17. Let ψ(z) ∈ L[<,+]. Then there exists a formula ψ̂(z) ∈ L[<,+] such that ψ is equivalent to

ψ̂, where all atomic formulas in ψ̂ with z are of the form z > ρ, z = ρ, z < ρ, z ≡n ρ, where ρ is a linear
function on variables other than z.

Proof. Terms in our logic are expressions of the form

α0 + α1x1 + · · ·+ αsxs ,where αi ∈ N

and atomic formulas are of the form

σ = γ, σ < γ, σ > γ, σ ≡m γ, c(σ)

whee σ, γ are linear functions, c ∈ Σ and m > 1.
Now using any M ∈ S, where m1 ∈M is not the neutral element, we can rewrite c(σ) as

Qm1

M x ¬λ(x)〈(x = σ) ∧ c(x), false, . . . , false〉

Now consider the atomic formulas containing the free variable z in ψ(z). By multiplying with appropriate
numbers, we can re-write these atomic formulas as nz = ρ, nz < ρ, nz > ρ, nz ≡l ρ for one particular n,
which is the least common multiple (lcm) of all the coefficients in ψ. Here ρ does not contain z and also
it might contain subtraction. That is nz = ρ might stand for nz + ρ1 = ρ2. Now we replace nz by z and
conjunct the formula with z ≡n 0. ⊓⊔

For any formula ψ(z), the notation ψ̂(z) denotes the normal form as in Lemma 17. Let x1, . . . , xs be the

bounded variables occurring in φ̂i(z) and y1, . . . , yr be the free variables other than z in φ̂i(z). Hence the

terms ρ that appear in the formula φ̂i(z) can be identified as functions, : Ns+r → N.
We collect all functions ρ(x,y) that occur in the formulas φ̂i(z) for an i ≤ K:

R = {ρ | where ρ is a linear term occurring in φ̂i(z), i ≤ K}

We define the set T of offsets as a set of terms which are functions using the variables y1, . . . , yr as parameters:

T = {ρ(0, . . . , 0, y1, . . . , yr) | ρ ∈ R} ∪ {0}

Consider the set of absolute values of all the coefficients appearing in one of the functions in R. Let α′ ∈ N
be the maximum value among these. That is α′ = max{|γ| | f ∈ R, γ is a coefficient in f}. Let ∆ = s · α′.

9

Now we can define our set of extended functions. For a t ∈ T we define a set of terms which are functions
using the variables x1, . . . , xs, y1, . . . , yr as parameters:

Ft =
{

s′
∑

i

αixi + t | s′ ≤ s,−∆ ≤ αi ≤ ∆,αi ∈ N
}

.

We denote by F = ∪t∈TFt.
For a fixed word w ∈ Σ∗λω and a fixed assignment of the free variables y to a we let Bw,a =

{f(d,a) | t ∈ T, f ∈ Ft,d ∈ nnp(w)s
′

, d1 > d2 > · · · > ds′}

be the set of boundary points. Note that the assignments to the functions are of strictly decreasing order.
Let b1 < b2 < . . . < bl be the boundary points in Bw,a. Then the following sets are called intervals :
(−1, b1), (b1, b2), . . . , (bl−1, bl), (bl,∞). Here (a, b) = {x ∈ N | a < x < b}. We also split the set of points in
Bw,a depending on the offset Bw,a

t =

{f(d,a) | f ∈ Ft,d ∈ nnp(w)s
′

, d1 > d2 > · · · > ds′}.

Let q be the lcm of all q′ where ≡q′ occurs in one of the φi. In the following we fix a word w ∈ Σ∗λω and an
a ∈ Nr.

Lemma 18. {ρ(d1, . . . , ds,a) | ρ ∈ R, di ∈ nnp(w)} ∪ nnp(w) ⊆ Bw,a

Proof. Let S = {ρ(d1, . . . , ds,a) | ρ ∈ R, di ∈ nnp(w)} ∪ nnp(w). Since ρ(x1) = x1 is in Ft, for some

t ∈ T , we have nnp(w) ⊆ Bw,a. Let b ∈ S. Then there is a function ρ =
∑s′

i αixi + t(y) in Ft and values
p1, . . . , ps′ ∈ nnp(w) such that b = ρ(p1, . . . , ps′ ,a). Let p

′
1 > p′2 > · · · > p′l be the ordered set of all pis in the

above assignment. We let ρ′(x1, . . . , xl) =
∑

i βixi + t, where βi =
∑

j:pj=p′

i
αj . Therefore b = ρ′(p′1, . . . , p

′
l).

Since |βi| ≤ ∆ · s we have ρ′ ∈ Ft and hence b ∈ Bw,a
t . ⊓⊔

We need the following lemma, that inside an interval with only neutral letters, the congruence relations
decide the truth of an active domain formula.

Lemma 19. Let a1, . . . , ar ∈ N and let c, d ∈ N belong to the same interval in Bw,a such that c ≡q d. Then
for all i ≤ K: w, c � φi(z,a) ⇔ w, d � φi(z,a).

Proof. Proof is by induction on the structure of the formula φ̂i. We will now show that ∀bi ∈ nnp(w) and all

subformulas ψ(z,x,y) of φ̂i that w, c, b,a � ψ ⇔ w, d, b,a � ψ. The atomic formulas of φ̂i(z,a) are of the
following form: z < ρ(x,a), z = ρ(x,a), z > ρ(x,a), z ≡q′ ρ(x,a), a(z) and formulas which does not depend
on z. It is clear that the truth of formulas which does not depend on z, a(z) and z ≡q′ ρ does not change
whether we assign c or d to z. Let b ∈ nnp(w)s. By Lemma 18 we know that ρ(b,a) is in Bw,a and since
c, d lies in the same interval it follows that c < ρ(b,a) ⇔ d < (b,a). Similarly we can show that the truth of
z > ρ, z = ρ does not change on z being assigned c or d. Thus we have that the claim holds for atomic formulas.
The claim clearly holds for conjunction and negation of formulas. Now let the claim hold for subformulas
ψ1, . . . , ψK . Therefore ∀i ≤ K we have that {b ∈ nnp(w)s | w, c, b,a � ψi} = {b ∈ nnp(w)s | w, d, b,a � ψi}.
Therefore we have that

w, c, b2, . . . , bs,a � Qm
Mx ¬λ(x)〈ψ1, . . . , ψK〉

⇔ w, d, b2, . . . , bs,a � Qm
Mx ¬λ(x)〈ψ1, . . . , ψK〉

And hence it is closed under active domain quantification. ⊓⊔

The following Lemma shows how to deal with the infinite interval.

Lemma 20. Let b belong to the infinite interval and a ∈ Nr. If w,a � φ then w, b,a 2 φi for any i ≤ K.

10

Proof. Let i ≤ K and b be in the infinite interval and w, b,a � φi. From Lemma 19 we know that all points
c ≡q b and such that c is also in the infinite interval will be a witnesses for φi. This means the set of witnesses
is infinite and hence w,a 2 φ. ⊓⊔

Lemma 19 shows that inside an interval, the congruence relations decide the satisfiability of the formulas
φis. This shows that it is enough to know the truth values of φi at a distance of ≥ q from the boundary
points, since the truth values inside an interval are going to repeat after every q positions. The rest of the
proof shows

1. How we can treat each Bt differently.
2. There is an active domain formula which goes through the points in Bt in an increasing order

We fix the word w ∈ Σ∗λω and assignment a. Therefore we drop the superscripts in Bw,a (Bw,a
t) and call

them B (Bt).

5.2 Treating each Bt differently

Let p = q|G|, where q was defined in the previous section and depends on the ≡q′ predicates. For an element
g ∈ G, we have g|G| = 1G, so g

x = gx+|G|. Recall the definitions of T,B from Section 5.
Recall from the Preliminaries (Section 2) that we denoted by u(i) the group element at position i. That

is u(i) = mj iff w,a |= φj ∧
∧

l<j ¬φl. Our aim is to give an active domain formula such that the formula
evaluates to true iff the group element

∏

i=0 u(i) is equal to m. The rest of this subsection will be devoted
to computing this product in a way which helps in building an active domain formula.

Let b < b′ be boundary points in B. Below we compute
∏b′−1

i=b+1 u(i) in a different way:

b′−1
∏

i=b+1

u(i) =
∏

i>b

u(i)





∏

i≥b′

u(i)





−1

.

Observe that we can compute the product of the interval using two terms that both need to know only one
boundary of the interval. It becomes simpler if we note that the two products do not really need to multiply
all the elements u(i), for i ≥ b′ but simply agree on a common set of elements to multiply.

For a b ∈ B, we define the function IL(b) to be the length of the interval to the left of b. That is if (b′, b)
form an interval then IL(b) = b− b′−1. Similarly we define IR(b) to be the length of the interval to the right
of b. For all k ≤ |T |, we define functions Nk(b) and N̂k(b), which maps points b ∈ B to a group element.

N0(b) =











u(b+ 1)u(b+ 2) . . . u(b+ IR(b)) if IR(b) < p

u(b+ 1)u(b+ 2) . . . u(b+ r)

if IR(b) ≥ p and r < p, b+ r ≡p 0

N̂0(p) =











1G if IL(b) < p

u(b− p) . . . u(b− p+ r)

if IL(b) ≥ p and r < p, b+ r ≡p 0

Inductively we define

Nk(b) = Nk−1(b)
∏

b′∈Btk

b′>b

(

N̂k−1(b
′)
)−1

u(b′)Nk−1(b
′),

N̂k(b) = N̂k−1(b)
∏

b′∈Btk

b′>b

(

N̂k−1(b
′)
)−1

u(b′)Nk−1(b
′).

We first show how Nk(b) and Nk(b
′) are related for b, b′ ∈ B.

11

Lemma 21. Let 0 ≤ k ≤ |T |. Let b < b′ ∈ B such that there are no points b′′ ∈
⋃

i>k Bti , where b < b′′ < b′.

Then Nk(b)(N̂k(b
′))−1 =

∏b′−1
i=b+1 u(i).

Proof. We prove this by induction over k. Let k = 0 and let (b, b′) form an interval in B. If b′ − b ≤ p then
(N0(b))(N̂0(b

′))−1 =
(

u(b+ 1)u(b+ 2) . . . u(b+ IR(b))
)

(1G)
−1 =

b′−1
∏

i=b+1

u(i)

If the interval is large, i.e. b′ − b > p, then let s, t ∈ N, be the smallest, resp. the largest numbers such
that b ≤ s ≤ t ≤ b′ and s ≡p t ≡p 0. Lemma 19 shows that inside an interval all positions congruent modulo
q satisfy the same formulas. Therefore u(b′ − p)u(b′ − p + 1) . . . u(b′ − 1) = 1G, and hence (u(b′ − p)u(b′ −
p+ 1) . . . u(t))−1 = (u(t+ 1) . . . u(b′ − 1)). So N0(b)(N̂0(b

′))−1 =

(

u(b+ 1)u(b+ 2) . . . u(s)
)(

u(t+ 1) . . . u(b′ − 1)
)

=
b′−1
∏

i=b+1

u(i)

The last equality being true since u(s+ 1) . . . u(t) = 1G
As induction hypothesis assume that the lemma is true for all k′ < k. Since for all b′′ > b′ the terms

(

N̂k−1(b
′′)
)−1

u(b′′)Nk−1(b
′′) appear in both Nk(b) and N̂k(b

′) they cancel out (whatever they compute to).

Thus Nk(b)(N̂k(b
′))−1 =

(

Nk−1(b)
∏

b′′∈Btk

b<b′′<b′

(

N̂k−1(b
′′)
)−1

u(b′′)Nk−1(b
′′)

)

(N̂k−1(b
′))−1

Let b = b0 < b1 < · · · < bx−1 < bx = b′ be all positions in Btk between b and b′. By the requirements
of the lemma the only positions of B between bi and bi+1 are in

⋃

i<k Bti . Writing out the product we get

Nk(b)(N̂k(b
′))−1 is equal to

Nk−1(b0)
(

N̂k−1(b1)
)−1 x−1

∏

i=1

u(bi) Nk−1(bi)
(

N̂k−1(bi+1)
)−1

By I.H. Nk−1(bi)
(

N̂k−1(bi+1)
)−1

=
∏bi+1−1

i=bi+1 u(i). Hence Nk(b)(N̂k(b
′)) =

∏b′−1
i=b+1 u(i). ⊓⊔

The following Lemma shows that u(0)N|T |(0) gives the product of the group elements.

Lemma 22. We have that u(0)N|T |(0) =
∏

i u(i).

Proof. Using appropriate induction hypothesis one can show that N|T |(0) =
∏l

i=1 u(i), where l > max(B).
The lemma now follows from Lemma 20 which shows that u(i) = 1G for every i in the infinite interval. ⊓⊔

We now give active domain formulas γm, m ∈ G, such that γm is true iff N|T |(0) = m. For this we make
use of the inductive definition of Nk and show that there exists active domain formulas γm (γ̂m) such that
w |= γm(b) ⇔ Nk(b) = m (w |= γ̂m(b) ⇔ N̂k(b) = m). Observe that Nk(b) is got by computing the product

of
(

N̂k−1(b
′)
)−1

u(b′)Nk−1(b
′), over b′, where b′ strictly increases. This requires us to traverse the elements

in Btk−1
in an increasing order. The following section builds a Sorting tree to sort the elements of Btk−1

in
an increasing order.

12

5.3 Sorting Tree

For a t ∈ T , we define a tree called sorting tree, Tt which corresponds to Bt. The tree satisfies the following
property. If the leaves of the tree are enumerated from left to right, then we get the set Bt in ascending
order. A node in Tt is labeled by a tuple (f,A), where f(x1, . . . , xl) is a function in Ft, A an assignment for
the variables in f such that A(x1) > A(x2) > · · · > A(xl) and ∀i ≤ l : A(xi) ∈ nnp(w).

We show how to inductively built the tree. The root is labeled by the tuple (t, {}), where t is the function
which depends only on y (and hence constant on x) and {} is the empty assignment. The root is not marked
a leaf node.

Consider the internal node (f(x1, . . . , xl), A). It will have three kinds of children ordered from left to
right as follows.

1. Left children: These are labeled by tuples of the form (f ′α, A
′
j) where f

′
α(x1, . . . , xl+1) = f(x1, . . . , xl) +

αxl+1 and −∆ ≤ α < 0, −α ∈ N, A′
j = A ∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w).

The tuples (f ′α1
, A′

j1
) is on the left of (f ′α2

, A′
j2
) if j1 > j2 or if j1 = j2 and α1 < α2.

2. Middle child: It is labeled by the tuple (f ′′, A) where f ′′(x1, . . . , xl) = f(x1, . . . , xl). It is marked a leaf
node.

3. Right children: These are labeled by tuples of the form (f ′α, A
′
j) where f

′
α(x1, . . . , xl+1) = f(x1, . . . , xl)+

αxl+1 and 0 < α ≤ ∆, α ∈ N, A′
j = A ∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w).

The tuple (f ′α1
, A′

j1
) is on the left of (f ′α2

, A′
j2
) if j1 < j2 or j1 = j2 and α1 < α2.

Observe that if there is no j such that j < A(xl) and j ∈ nnp(w), then (f,A) will only have the child
(f ′′, A).

Note that in our tree construction the values of the children of a node increase from left to right. The
tree is built until all functions with s variables appear in leaves and hence the depth of the tree is s + 2.
Figure 1 shows part of a tree, where ∆ = 2, t = 0, R = 5 and nnp(w) = {5, 25, 625} ⊆ DR.

Fig. 1. Sorting Tree: The double circles represent leaves of the tree. The nodes of the tree are labelled (f,A), where
A is an assignment for the function f and t = 0. For better presentation we only show the assignment to the newly
introduced variable in a node. For example, the tuple (x− 2y, 25) assigns x = 625 and y = 25. The assignment to x

is given in the node’s parent.

The following lemma holds if R > 3s∆. We also assume that nnp(w) ⊆ DR. Given a node (f,A), we say
the value of the node is the function f evaluated under the assignment of A (denoted by f(A)).

13

Lemma 23. Let N be an internal node labeled by a function f(x1, . . . , xl) with l < s and an assignment A.
If A(xl) = Rc for some c ≥ 1, then the children of this node have values in the range [f(A)−∆Rc−1, f(A)+
∆Rc−1]. Moreover the values of the children increases from left to right.

Proof. By construction. ⊓⊔

Next we show that for any two neighboring nodes in the tree, the values in the leaves of the subtree
rooted at the left node is less than the values in the leaves of the subtree rooted at the right node. Let V(f,A)

denote the set of values in the leaves of the subtree rooted at (f,A).

Lemma 24. Let (f,A) and (f ′, A′) be neighboring nodes of the same parent such that (f,A) is to the left of
(f ′, A′). Then u < v for every u ∈ V(f,A) and v ∈ V(f ′,A′).

Proof. Let f =
∑l−1

i=1 αixi+αlxl+ t and f
′ =

∑l−1
i=1 αixi+α

′
lxl+ t. We show that the rightmost element, u in

V(f,A) is less than the left most element, v in V(f ′,A′). From Lemma 23 and applying induction on the depth

of the tree, one can show that u ≤ f(A)+(s− l)∆Rc−1 and v ≥ f ′(A′)− (s− l)∆Rc′−1. Here Rc,Rc′ are the
minimum assignments in A and A′ respectively. Let us assume that both coefficients α′

l, αl > 0. A similar
analysis can be given for other combinations of α′

l and αl. Now since (f,A) is the left neighbor of (f ′, A′)

we have Rc < Rc′ . Then v− u ≥ α′
lR

c′ − (s− l)∆Rc′−1 −αlR
c − (s− l)∆Rc−1 ≥ Rc′ − 3s∆Rc′−1 > 0. The

claim follows, since R > 3s∆. ⊓⊔

The next lemma says that the values of the leaves of the tree increases as we traverse from left to right.

Lemma 25. Let (f,A) and (f ′, A′) be two distinct nodes such that f(A) < f ′(A′). Then (f,A) appear to
the left of (f ′, A′).

Proof. This follows from Lemma 24. ⊓⊔

Lemma 26 (Tree Lemma). Fix t ∈ T . Assume that for every b ∈ Bt we have an element gb ∈ G. For all
f ∈ Ft, m ∈ G let γmf (x) be active domain formulas such that w,d |= γmf (x) iff gf(d) = m. Then there are

active domain formulas Γm′

such that w |= Γm′

iff
∏

b∈Bt
gb = m′.

Proof. We will use the sorting tree, Tt corresponding to Bt for the construction of our formula. Recall that
the nodes are labeled by tuples (f,A), where f is a function and A is the assignment of the parameters of
f . Let V(f,A) ⊆ Bt be the set of values at the leaves of the subtree rooted at the node labeled by (f,A), and

g(f,A) =
∏

b∈V(f,A)
gb. We will do induction on the depth D of the tree. Let τm,D

f (x) be a formula such that

w,d |= τm,D
f (x) iff

∏

b∈V(f,d)
gb = m where (f,d) is the label of a node that has a subtree of depth at

most D. Hence we multiply all group elements gb for which b is in V(f,d).

Base Case (leaves): We define τm,0
f (x) = γmf (x).

Induction Step: Let us assume that the claim is true for all nodes with a subtree of depth at most D.
Let the node labeled by (f,A) have a subtree of depth D+1. We will need to specify the formula τm,D+1

f (x),
where x agrees with the assignment A. For every child (f ′, A′) of (f,A) the depth of the corresponding
subtree is less than or equal to D. Hence we know we have already formulas by induction.

Recall what the children of (f,A) are: They are of form (f ′α, A
′
j) and (f ′′, Aj). Moreover all nodes (f ′α, A

′
j),

where α is negative, come to the left of (f ′′, Aj) and all nodes (f ′α, A
′
j), where α is positive, come to its right.

We start by grouping some of the children and computing their product. We let T−(A′
j) be the product

of all subtrees labeled by (f ′α, A
′
j) for α = −∆,−∆+ 1, . . . ,−1. This is a finite product so we can compute

this by a Boolean combination of the formulas τm,D
f ′

α
(x, xl+1).

π−,m,D
f (x, xl+1) ::=

∨

m−∆...m−1=m

(−1
∧

α=−∆

τmα,D
f ′

α
(x, xl+1)

)

14

Now we want to compute the product
(

∏

j∈nnp(w)(T
−(A′

j))
−1

)−1

which is the product of the T−(A′
j) where

j ∈ nnp(w) is decreasing. But this can be computed using an active domain group quantifier, τ−,m,D
f (x) as

follows:
τ−,m,D
f (x) = Qm−1

G xl+1

(

¬λ(xl+1) ∧ (xl > xl+1)
)

〈π
−,m

−1
1 ,D

f (x, xl+1), . . . , π
−,m

−1
K

,D

f (x, xl+1)〉

Recall that the elements of group G are ordered m1, . . . ,mK . For the single node (f ′′, A) we already have the

formulas τm,D
f ′′ (x) by induction (here we have x since the assignment A is the same for (f,A) and (f ′′, A)).

Similarly we define formulas π+,m,D
f (x, xl+1) for the positive coefficients, and compute their product

∏

j∈nnp(w) T
+(A′

j) in an increasing order.

π+,m,D
f (x, xl+1) ::=

∨

m1...m∆=m

(∆
∧

α=1

τmα,D
f ′

α
(x, xl+1)

)

τ+,m,D
f (x) ::= Qm

Gxl+1

(

¬λ(xl+1) ∧ (xl > xl+1)
)

〈π+,m1,D
f (x, xl+1), . . . , π

+,mK ,D
f (x, xl+1)〉

We have now computed the product of the group elements for the three different groups of children. So by
a Boolean combination over these formulas we get τm,D+1

f (x):

∨

m′m′′m′′′=m

(

τ−,m′,D
f (x) ∧ τm

′′,D
f ′′ (x) ∧ τ+,m′′′,D

f (x)
)

So finally we get Γm′

which is same as the formula τm
′,s+2

(0,{}) , which is valid at the root of the tree. ⊓⊔

Since the above lemma holds only for R > 3s∆, our Rφ should be greater than 3s∆.

5.4 Construction of the formula

We know that for every b ∈ B there is a function f ∈ F , d1, . . . , ds′ ∈ nnp(w), such that b = f(d,a),
where a is the fixed assignment to the variables y. We will use this encoding of a position and define a
formula νmk,f such that w,d,a |= νmk,f (x,y) iff Nk(f(d,a)) = m. Similarly we define formulas ν̂mk,f such that

w,d,a |= ν̂mk,f (x,y) iff N̂k(f(d,a)) = m.
We show this by induction over k ≤ |T |. Starting with the base case k = 0.

Lemma 27. Let a ∈ Nr. For each m ∈ G, there is an active domain formula νm0,f (x,y) in L[<,+], such
that if w |= νm0,f (d,a) then N0(f(d,a)) = m.
Similarly there is an active domain formula ν̂m0,f (x,y) in L[<,+] such that if w,d |= ν̂m0,f (x,a) then

N̂0(f(d,a)) = m.

Proof. For an i ≤ K, we denote by φ̃mi
the formula

∧

j<i ¬φj(x,y) ∧ φi(x,y). For a l ∈ N, the following
formula checks if there is a point b′ in B such that b + l = b′. Since in each B there is at most one such
element, we can use the group quantifier to simulate the existential quantifier.

δlf ::=
∨

f ′∈F\f

Qm1

G x′〈f ′(x′,y) = f(x,y) + l, false, . . . , false〉

So we have that IR(b) = l iff δl+1
f ∧

∧

l′<l ¬δ
l
f is true. We define πm,l

f to be true if the product of the first l
group elements is m.

πm,l
f ::=

∨

g0...gl=m

(l
∧

i=0

φ̃gi(f(x,y) + i)

)

15

Now we have two cases to consider.
Case IR(b) < p: For each of the case b < b′ such that l = b′ − b ≤ p, the formula πm,l

f compute the product
of the group elements. Hence νm0,f in this case can be given as:

p−1
∧

l=0

(

(

δlf (x,y) ∧
l−1
∧

l′=0

¬δl
′

f (x,y)
)

→ πm,l
f (x,y)

)

Case IR(b) ≥ p: When b′ − b > p we have to compute the product for the first r group elements, where
b+ r ≡p 0 and r < p. Therefore νm0,f in this case is

p−1
∧

l=0

(

f(x,y) + r ≡p 0
)

→ πm,r
f (x,y)

A Boolean combination over δlf can differentiate the two cases. Similarly we can give active domain formulas
ν̂m0,f (x,y). ⊓⊔

The induction step follows.

Lemma 28. Let a ∈ Nr. For each m ∈ G, there is an active domain formula νmk,f in L[<,+], such that
w,d,a |= νmk,f (x,y) then Nk(f(d,a)) = m.
Similarly there is an active domain formula ν̂mk,f (x,y) in L[<,+], such that w,d,a |= ν̂mk,f (x,y) then

N̂k(f(d,a)) = m.

Proof. For all m ∈ G and f ′ ∈ Ftk we give formulas γmf ′ such that for all d′ ∈ nnp(w)s the following holds.
Let f ′(d′,a) = b′ and f(d,a) = b. Then w,d,d′,a |= γmf ′ (x, z,y) ⇔ b′ ≤ b and m = 1G or b′ > b and
(

N̂k−1(b
′)
)−1

u(b′)Nk−1(b
′) = m. By induction hypothesis there exists formulas νmk−1,f ′ and ν̂mk−1,f ′ which

corresponds to Nk−1(f
′(x,y)) and N̂k−1(f

′(x,y)) respectively. Taking a Boolean combination over these
formulas we get the required formula γmf ′ . We now apply our Tree Lemma 26 which gives us formulas Γm,
for all m ∈ G, such that w,d,a |= Γm(x,y) iff

w |=
∏

b′∈Btk

b′>b

(

N̂k−1(b
′)
)−1

u(b′)Nk−1(b
′) = m

Taking Boolean combination over Γm and ν̂mk−1,f will give us the formula νmk,f . Similarly we can build active
domain formulas ν̂mk,f (x,y), for all m ∈ G. ⊓⊔

Proof (Proof of Lemma 12). By Lemma 22 we know that it suffices to compute N|T |(0) and by Lemma 28
we know that there are active domain formulas Γm ∈ L[<,+] such that N|T |(0) = m iff w,0,a |= Γm

We need to do one last thing. Check that the infinite interval evaluates to 1G. Replace all formulas z > ρ,
z < ρ, c(z) for a c 6= λ and λ(z) by true, false, false, true respectively in the formulas φ̂i and call these

formulas ψ̂i. There exists a witness in the infinite interval for the formula φ̂i iff ψ̂i evaluates to true. By
Theorem 20 there should not be any witness in the infinite interval. Hence there exists a ψ̂i which evaluates
to true iff the infinite interval does not evaluate to 1G. ⊓⊔

6 Lower bounds on Graphs

7 Almost Neutral Letter languages

8 Discussion

We have shown that in the presence of a neutral letter the addition relation collapse to linear ordering
no matter what monoid quantifier is been used. All languages definable using monoid quantifiers and an

16

order predicate, on the other hand, are regular [3]. Now using semigroup theoretic methods we can separate
these classes [26]. This enabled us to show separation between various logics which uses addition and order
predicates.

Unfortunately if both addition and multiplication are present, then the collapse does not happen. It is
also interesting to note that non-solvable groups do not show any surprising property if only addition is
present, but as we know from Barrington’s theorem non-solvable groups behave quite differently when both
addition and multiplication are present.

The ultimate objective is to show non-expressibility results for arbitrary predicates or at least when both
addition and multiplication are present. As a first step one can look at extending these results for other kinds
of predicates.

Another way to look at separating the “natural uniform” versions of the complexity classes will be to
ask whether one can come up with other suitable restrictions on the set of languages. Inside this restricted
set of languages can one show addition and multiplication collapse to order relation? This seems to be the
idea Straubing considers in [27]. Straubing [26] proposes word problems over Regular language as a suitable
restriction, while McKenzie, Thomas, Vollmer [20] consider context free languages as a restriction.

Another interesting question which our result fails to answer is whether word problems over non-solvable
groups can be defined in MAJ[<,+] [13]?

Acknowledgement

We like to thank Baskar Anguraj, Christoph Behle, Michaël Cadilhac, Klaus-Jörn Lange, Nutan Limaye, T.
Mubeena, and Ramanujam for a lot of useful comments on the draft of this paper.

References

1. David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in
NC1. Journal of Computer and System Sciences, 38(1):150–164, February 1989.

2. David A. Mix Barrington, Neil Immerman, Clemens Lautemann, Nicole Schweikardt, and Denis Thérien. First-
order expressibility of languages with neutral letters or: The Crane Beach conjecture. J. Comput. Syst. Sci.,
70(2):101–127, 2005.

3. David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1. Journal of
Computer and System Sciences, 41(3):274–306, December 1990.

4. David A. Mix Barrington and Howard Straubing. Superlinear lower bounds for bounded-width branching pro-
grams. In Structure in Complexity Theory Conference, pages 305–313, 1991.

5. Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Non-solvable groups are not in
FO+MOD+MÂJ2[REG]. In LATA, pages 129–140, 2009.

6. Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Regular languages definable by majority quantifiers
with two variables. In Developments in Language Theory, pages 91–102, 2009.

7. Christoph Behle and Klaus-Jörn Lange. FO[<]-uniformity. In IEEE Conference on Computational Complexity,
pages 183–189, 2006.

8. Michael Benedikt and Leonid Libkin. Relational queries over interpreted structures. J. ACM, 47(4):644–680,
2000.

9. Arkadev Chattopadhyay, Andreas Krebs, Michal Koucký, Mario Szegedy, Pascal Tesson, and Denis Thérien.
Languages with bounded multiparty communication complexity. In STACS, pages 500–511, 2007.

10. Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy. Math-
ematical Systems Theory, 17(1):13–27, 1984.

11. Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
12. Michal Koucký, Pavel Pudlák, and Denis Thérien. Bounded-depth circuits: separating wires from gates. In

STOC, pages 257–265, 2005.

13. Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Characterizing TC0 in terms of infinite groups.
Theory Comput. Syst., 40(4):303–325, 2007.

14. Klaus-Jörn Lange. Some results on majority quantifiers over words. In IEEE Conference on Computational
Complexity, pages 123–129. IEEE Computer Society, 2004.

17

15. Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert Vollmer. The descriptive complexity
approach to LOGCFL. J. Comput. Syst. Sci, 62(4):629–652, 2001.

16. Clemens Lautemann, Pascal Tesson, and Denis Thérien. An algebraic point of view on the crane beach property.
In CSL, pages 426–440, 2006.

17. Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin, 2004.
18. P. Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–195, 1966.
19. James F. Lynch. On sets of relations definable by addition. J. Symb. Log., 47(3):659–668, 1982.
20. Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity for boolean circuits. SIAM

Journal on Computing, 39(7):3186–3206, 2010.
21. Juha Nurmonen. Counting modulo quantifiers on finite structures. Inf. Comput., 160(1-2):62–87, 2000.
22. Amitabha Roy and Howard Straubing. Definability of languages by generalized first-order formulas over (N,+).

SIAM J. Comput, 37(2):502–521, 2007.
23. M. Ruhl. Counting and addition cannot express deterministic transitive closure. In 14th Symposium on Logic in

Computer Science (LICS’99), pages 326–335, Washington - Brussels - Tokyo, July 1999. IEEE.
24. Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log, 6(3):634–

671, 2005.
25. Alexei P. Stolboushkin and Damian Niwinski. y = 2x vs. y = 3x. J. Symb. Log., 62(2):661–672, 1997.
26. Howard Straubing. Finite automata, formal logic, and circuit complexity. Birkhauser Verlag, Basel, Switzerland,

1994.
27. Howard Straubing. Inexpressibility results for regular languages in nonregular settings. In Developments in

Language Theory, pages 69–77, 2005.
28. Howard Straubing, Denis Thérien, and Wolfgang Thomas. Regular languages defined with generalized quanifiers.

Inf. Comput, 118(2):289–301, May 1995.
29. Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag, Berlin-Heidelberg-New York-Barcelona-

Hong Kong-London-Milan-Paris-Singapur-Tokyo, 1999.

18

