
NON-DEFINABILITY OF LANGUAGES BY GENERALIZED
FIRST-ORDER FORMULAS OVER (N,+)

ANDREAS KREBS AND A V SREEJITH

Abstract. We consider first-order logic with monoidal quantifiers over words. We show that
all languages with a neutral letter, definable using the addition predicate are also definable with the
order predicate as the only numerical predicate. Let S be a subset of monoids. Let LS be the logic
closed under quantification over the monoids in S, and NL be the class of neutral letter languages.
Then we prove that

LS [<,+] ∩NL = LS [<] ∩NL

Our result can be interpreted as the Crane Beach conjecture to hold for the logic LS [<,+]. As a
consequence we get the result of Roy and Straubing that FO+MOD[<,+] collapses to FO+MOD[<].
For cyclic groups, we answer an open question of Roy and Straubing, proving that MOD[<,+]
collapses to MOD[<]. Our result also shows that multiplication as a numerical predicate is necessary
for Barrington’s theorem to hold and also to simulate majority quantifiers.

All these results can be viewed as separation results for highly uniform circuit classes. For
example we separate FO[<,+]-uniform CC0 from FO[<,+]-uniform ACC0.

Key words. formal languages, descriptive complexity, circuit complexity, finite model theory,
semigroup theory

AMS subject classifications.

1. Introduction.

1.1. Circuit Complexity. The circuit family class AC0 is defined as the family
of languages recognized by constant depth polynomial sized family of circuits having
unbounded fan-in AND, and OR gates. Similarly ACC0(p) is the family of lan-
guages recognized by constant depth polynomial sized family of circuits containing
unbounded fan-in AND, OR and MODp for p > 0. Similarly CC0(p) corresponds
to constant depth, polynomial size circuits with only MODp gates. ACC0(CC0) is
defined as the set of languages recognized by an ACC0(p) (CC0(p)) family of circuits
for some p > 0. The circuit class TC0 corresponds to circuits with constant depth,
polynomial size and having in addition to AND and OR gates MAJ (majority) gate.
On the other hand NC1 circuits are defined polynomial sized, log depth circuits con-
taining AND and OR gates. There is an alternate characterization for NC1. It is
the family of languages recognized by constant depth, polynomial sized family of cir-
cuits which uses AND, OR and finite group gates. The reader can refer to the books
[], [] to know more about these classes.

Results by Razborov [] and Smolensky [] shows that:
Theorem 1.1. [,] If p is a prime number and q is a prime other

than p then the language Lq is not contained in ACC0(p).
Hence we can infer the following: AC0 is separated from ACC0(p) for a p > 0

[]; there are languages in CC0(p) which are not in AC0; the classes ACC0(p)
and ACC0(q) are different from each other if p and q are distinct primes. But rela-
tionships between most other classes are open. For example, we do not know whether
CC0 is different from ACC0. In fact we do not know whether CC0(6) contains AC0

or whether CC0(6) is even distinct from Np. These are among the biggest unsolved
problems in circuit complexity.

Each of the above circuit classes have a model-theoretic characterization. It is
known, from the results of Immerman [,], that the set of languages

1

2 Andreas Krebs and A V Sreejith

accepted by non-uniform-AC0 circuits are exactly those definable by first order logic
which uses an order and some arbitrary relations. We denote this logic by FO[<,Arb],
where Arb is the class of all relations possible on N. On the other hand dlogtime-
uniform-AC0 circuits are exactly those definable (see Barrington et.al[]) by
first order logic which uses order, addition and multiplication relations (denoted by
FO[<,+,×]). First order logic with different built-in predicates can be seen as the
complexity class AC0 with different uniformity conditions. From here onwards we
consider only dlogtime-uniform circuits and hence any circuit family we mention will
be dlogtime-uniform unless otherwise stated. Behle and Lange [] gives a no-
tion of interpreting FO[<,+] as highly uniform circuit classes. Other circuit fam-
ilies also have model theoretic characterization. We have that the circuit family
CC0corresponds to MOD[<,+,×], ACC0 corresponds to FOMOD[<,+,×], TC0

corresponds to MAJ[<,+,×], and NC1 corresponds to GROUP[<,+,×]. The above
characterization of the circuit classes come under Descriptive complexity (it studies
how different complexity classes can be captured by different logics) of circuit classes.
The books by Immerman [], Vollmer [] and Straubing [] show the
close connection between logics with monoid quantifiers and circuit classes. Table1 identifies the language/complexity classes for logics with different quantifiers and
relations.

Relations
[<] [<,+] [<,+,×]

∃ Aperiodic AC0

MODp p-Solvable groups CC0(p)
MOD Solvable Groups CC0

Quantifiers
∃,MODp p-Solvable Monoids Our ACC0(p)
∃,MOD Solvable Monoids ACC0

S5 Symmetric Group, S5 NC1

Group Groups Study NC1

∃, Group Monoids NC1

Algebraic characterization Circuit Complexity

Table 1
Generalized quantifiers and Expressiveness

This helps us to look at the questions regarding separation of circuit classes from
the descriptive complexity perspective. But no separation result has been made after
the announcement of Smolensky’s result. Razborov and Rudich [] has analyzed
the reason why these questions are hard. They show that no “natural proof ” can prove
the separation between these classes. Hence, as a first step, one can ask the question
of separating the logics when the multiplication relation is not available. That is,
can one separate MOD[<,+] from FOMOD[<,+]? Is GROUP[<,+] different from
FOMOD[<,+]? Table shows the algebraic characterization for each of the logic
classes if only the linear order is present. Algebraic techniques can be used to show
that these classes are separated from each other []. Hence the most natural
question would be to understand the classes of languages accepted by the various
logics when addition is also present.

In Section, we give a powerful technique to prove lower bound results for FO[<
,+] extended with regular quantifiers. In fact we show that most of these classes are

Non-definability of languages by generalized first-order formulas 3

separated. The separation corresponds to algebraic properties of the quantifiers. The
corollary ?? puts this in perspective.

1.2. The Crane Beach conjecture. As we have seen, there are just a handful
of techniques available for proving lower bound results for circuit families. Most of
these techniques are combinatorial in nature. Secondly, there has been very little
understanding of the power the built-in predicates give to the logic classes. For
example, how do we show that a certain language in non-uniform-AC0is infact not
in dlogtime-uniform-AC0. In order to understand the expressive power of different
relations, Thérien proposed (see Barrington et.al[+05]), what came to be called
the Crane Beach conjecture. In order to state the conjecture, we need to define a
neutral letter language.

Definition 1.2. Let L ⊆ Σ∗ be a language over the alphabet Σ. We say that a
letter λ ∈ Σ is a neutral letter for the language L if

uλv ∈ L⇔ uv ∈ L

That is we can insert or delete the letter λ from any word, w ∈ Σ∗ without affecting
its membership in L. Let us look at an example.

Example 1. (Parity) The following language L2 is a language with a neutral
letter, where b is a neutral letter.

L2 = {w ∈ {a, b}∗ | |w|a ≡ (0 mod 2)}

Here is another example:
Example 2. (word problem over group) Look at a word problem over a group G.

Then clearly the identity element of the group, 1G is a neutral letter for the language.
The Crane Beach conjecture states that
Conjecture 1. A language with a neutral letter is definable in FO[<,Arb] iff

it is definable in FO[<]. The conjecture says that first order logic with arbitrary
numerical predicates will collapse to first order logic with only linear ordering in the
presence of a neutral letter. The idea is that, in the presence of a neutral letter,
formulas cannot rely on the precise location of input letters and hence numerical
predicates will be of little use. Nevertheless the conjecture was refuted by Barrington
et. al [+05]. In fact they show, using the fact (see Ajtai and Ben-Or [])
that dlogtime-uniform-AC0 can count the number of occurrences of the letter a up
to log of the input size, that the conjecture does not hold for the logic FO[<,+,×],
i.e. first order logic with a linear order, addition, and multiplication relations. The
search was then to find out for what logics and relations does the conjecture hold. So,
in the most general form, the Crane Beach conjecture can be stated as follows. Let
NL denote the class of languages with neutral letters. Let R be a set of relations on
N. Let S be a subset of monoids. Then the Crane Beach conjecture says that 1

Conjecture 2.

LS [<,R] ∩NL = LS [<] ∩NL

In the same paper [+05], the authors identify various logics where the CBC
(short for Crane Beach conjecture) hold and various other logics where the CBC does

1LS be the logic closed under quantification, where the quantifiers are Lindström quantifiers are
over some monoid in S.

4 Andreas Krebs and A V Sreejith

not hold. For example. The Boolean closure of the Σ1-fragment of FO[Arb] does
satisfy the conjecture. That is B(Σ1)[Arb] ∩ NL = B(Σ1)[<] ∩ NL. Lautemann,
Tesson and Thérien [] considered modulo counting quantifiers. They show that
B(Σ0,p

1)[Arb] ∩NL = B(Σ0,p
1)[<] ∩NL. This is equivalent to showing that

Theorem 1.3. [] Let p be a prime number. Then

MODp[Arb] ∩NL = MODp[<] ∩NL

Benedikt and Libkin [], in the context of collapse results in database theory,
had shown that first order logic with only the addition and order relation satisfies the
Crane Beach conjecture. A different proof of the result can be found in [+05]. We
show that this result can be generalized to any monoid quantifier. Let S be a subset
of monoids. Our main result (Theorem) shows that the Crane Beach conjecture
hold for the logic LS [<,+]. That is:

LS [<,+] ∩NL = LS [<] ∩NL.

If S is an aperiodic monoid, then the Theorem is equivalent to the result of Benedikt
and Libkin. Roy and Straubing [] (used ideas of Benedikt and Libkin to) show
that FOMOD[<,+] in the presence of neutral letters collapse to FOMOD[<]. In the
same paper they posed the question

Conjecture 3. (posed in [])

MOD[<,+] ∩NL = MOD[<] ∩NL

This is proved by a corollary of our Theorem.
Our main Theorem can also be viewed from the Circuit complexity perspective.

Our results therefore can be summarized as: every FO[<,+] uniform constant depth
polynomial size circuit with gates that compute a product in S and that recognize a
language with a neutral letter can be made FO[<]-uniform.

As a consequence of our Theorem we are able to separate these highly uniform
versions of circuit classes. For example: The theorem states that MOD[<,+] definable
languages with a neutral letter are also definable in MOD[<]. Since MOD[<] cannot
simulate existential quantifiers [] we have that FO[<,+] and MOD[<,+] are
incomparable. In fact we show that no group quantifier can simulate existential
quantifier if only addition is available.

Another corollary gives an alternate proof of the known result [] that FO-
MOD(m)[<,+] cannot count modulo a prime p, which does not divide m.

Another corollary shows that the majority quantifier cannot be simulated by
group quantifiers if multiplication is not available, thus separating MAJ[<,+] from
fogrp[<,+]. Barrington’s theorem [] says that word problems over any finite
group can be defined by the logic which uses only the S5 group quantifier (the group
whose elements are the set of all permutations over 5 elements) if addition and mul-
tiplication predicates are available. Our result show multiplication is necessary for
Barrington’s theorem to hold. In other words S5 cannot define word problems over
S6 if only addition is available.

The interesting thing to note is how the neutral letter concept has turned out
to useful for proving lower bound results for “highly” uniform circuit classes. The
neutral letter has also been used in the past for showing non-expressibility results. It
had been used for showing super linear lower bounds for bounded-width branching
programs [], super linear wires in circuit classes [] and in communication
complexity [+07]. The neutral letter concept is also closely related to collapse-
results in database theory [].

Non-definability of languages by generalized first-order formulas 5

2. Preliminaries.

2.1. Words and Languages. An alphabet Σ is a finite set of symbols. The set
of all finite words over Σ is denoted by Σ∗, the set of all right infinite words is denoted
by Σω. Let Σ∞ = Σ∗ ∪Σω, denote the set of all finite words and right infinite words.
A word w ∈ Σ∞ starts from position 0. For a word w ∈ Σ∞ the notation w(i) denotes
the ith letter in w, i.e. w = w(0)w(1)w(2)

Consider a language L ⊆ Σ∞ and a letter λ ∈ Σ. We say that λ is a neutral
letter for L if for all u, v ∈ Σ∞ we have that uλv ∈ L ⇔ uv ∈ L. The neutral
letter languages, or the set of all languages with a neutral letter, is denoted by NL.
Henceforth, if otherwise not stated, λ will be the neutral letter for a language in NL.
For a word w in a language L ∈ NL, we define the non-neutral positions nnp(w) of
w to be the set of all positions which do not have the.

2.2. Monoids. A monoid is a set closed under a binary associative operation
and has an identity element. All we consider except for Σ ∗ and Σ∞ will be
finite. A monoid M and S ⊆M defines a word problem. Its language is composed of
words w ∈ M∗, such that when the elements of w are multiplied in order we get an
element in S. N is a submonoid of M , if N is a subset of M and N is itself a.
We say that a monoid M divides a monoid N if there exists a N ′ of N and
a surjective morphism from N ′ to M . A monoid M recognizes a language L ⊆ Σ∗ if
there exists a morphism h : Σ∗ →M and a subset T ⊆M such that L = h−1(T). It is
known that finite monoids recognize exactly regular languages []. We denote by
M the set of all finite monoids, G ⊂ M the set of all finite groups and MOD the set
of all finite cyclic group. We denote by U1 the monoid consisting of elements {0, 1}
under multiplication. For a monoid M , the element 1 ∈ M will denote its identity
element . We also use the block product of monoids, whose definition can be found in
[]. For a set S of monoids, bpc(S) denotes the smallest set which contains S and
is closed under block products.

TODO: Should define block product.

s · s 0 1
0 0 0
1 0 1

Table 2
U1 monoid

2.3. Logics. Given a formula φ with free variables x1, . . . , xk, we write w, i1, . . . , ik |=
φ if w is a model for the formula φ when the free variables xj is assigned to ij for
j = 1, . . . , k. We abuse notation and let c ∈ Σ also be the unary predicate symbols
of the logic we consider. That is w, i |= c(x) iff w(i) = c. Let V be a set of variables,
R be a set of numerical predicates and S ⊆M. We define the logic LS [R] to be
built from the unary predicate symbols c, where c ∈ Σ, the binary predicate {=}, the
predicates in R, the variable symbols V, the Boolean connectives {¬,∨,∧}, and the
monoid quantifiers QmM , where M ∈ S is a monoid and m ∈M . We also identify the
logic class LS [R] with the set of all languages definable in it.

Our definition of monoid quantifiers is a special case of Lindström quantifiers
[]. The formal definition of a monoid quantifier [] is as follows. Let M =
{m1, . . . ,mK , 1} be a monoid with K + 1 elements. For an m ∈ M , the quantifier
QmM is applied on K formulas. Let x be a free variable and φ1(x), . . . , φK(x) be K

6 Andreas Krebs and A V Sreejith

formulas. Then u |= QmMx〈φ1(x), . . . , φK(x)〉 iff the word u when multiplied gives the
element m, i.e.

∏
i u(i) = m, where the ith letter of u, 0 ≤ i < |u|, is

u(i) =

m1 if w, i |= φ1

m2 if w, i |= ¬φ1 ∧ φ2

...
mK if w, i |= ¬φ1 ∧ · · · ∧ ¬φK−1 ∧ φK

1 otherwise

The following “shorthand” notation is used to avoid clutter. We denote by
QmMx φ 〈α1, . . . , αK〉, the formula QmMx〈φ ∧ α1, . . . , φ ∧ αK〉. Informally, this rel-
ativizes the quantifier to the positions where φ is true, by multiplying the neutral
element in all other places.

Our Notation Common Notation
LU1

FO
LC MOD
LG GROUP
L{C,U1} FOMOD
LM FOGROUP

Table 3
Logics: Comparing our and common notation.

The following result gives an algebraic characterization for the logic LS [<].
Lemma 2.1 ([]). Let S ⊆M. Let L ⊆ Σ∗ such that M is the smallest

monoid which recognizes L. Then L is definable in LS [<] iff M divides a monoid in
bpc(S).

2.4. Examples. Consider the monoid U1. It is easy to see that the word prob-
lem defined by U1 and the set {0} defines the regular language 1∗0(0 + 1)∗. Then
Q0
U1

is same as the existential quantifier ∃, since any formula of the form ∃xφ is
equivalent to Q0

U1
x 〈φ〉. So the logic LU1 [<] denotes first-order logic, FO[<]. Let Cq

stand for the cyclic group with q elements. Then the quantifiers Q1
Cq

corresponds

to modulo quantifiers []. Thus LMOD[<] corresponds to all regular languages
whose syntactic monoids are solvable groups []. For a sentence φ ∈ LS [R] we
define L(φ) = {w | w � φ}.

3. Results. Recall Monoid quantifiers from Preliminaries.
Let S ⊆M be any set of monoids. We show that the Crane Beach conjecture is

true for the logic LS [<,+].
Theorem 3.1 (Main Theorem). Let S ⊆M. Then

LS [<,+] ∩NL = LS [<] ∩NL

The proof of this theorem is given in Section.

3.1. Non definability Results. Theorem give us the following corollaries.

Corollary 3.2. All languages with a neutral letter in LM[<,+] are regular.
Proof. By Theorem we know that all languages with a neutral letter in LM[<

,+] can be defined in LM[<] which by Lemma is the set of all regular languages.

Non-definability of languages by generalized first-order formulas 7

Recall that a monoid M divides a monoid N if M is a morphic image of a
submonoid of N .

Corollary 3.3. Let S ⊆ G. Let G be a simple group that does not divide any
monoid M in S. Then the word problem over G is not definable in LS [<,+].

Proof. The word problem over G has a neutral letter. The result now follows
from Theorem and Lemma.

It is known that the majority quantifier can be simulated by the non-solvable
group S5 if both multiplication and addition are available []. We show that
multiplication is necessary to simulate majority quantifiers.

Corollary 3.4. MAJ[<] * LM[<,+].

Proof. Consider the language L ⊆ {a, b, c}∗ consisting of all words with an equal
number of a’s and b’s. L can be proven to be definable in MAJ[<]. Also note that
c is a neutral element for L. By Corollary, and the fact that L is nonregular, we
know that L is not definable in LM[<,+].

Barrington’s theorem [] says that the word problem of any finite group can
be defined in the logic LS5

[<,+, ∗]. The following theorem shows that multiplication
is necessary for Barrington’s theorem to hold.

Corollary 3.5. The word problem over the group S6 is not definable in LS5
[<

,+]. Infact there does not exist any one finite monoid M such that all regular lan-
guages can be defined in LM [<,+].

Proof. A6 is a simple subgroup of S6, which does not divide S5. From Corollary3.3 it follows that the word problem over S6 is not definable in LS5
[<,+].

For any finite monoid M , there exists a simple group G such that G does not divide
M and hence the word problem over G is not definable in LM [<,+].

Let Lp be the set of all words w ∈ {0, 1}∗ such that the number of occurrences of
1 in w is equal to 0 (mod p). Then we get the result in [] that Lp is not definable
in FO + MODm[<,+], if p is a prime which does not divide m.

Corollary 3.6 ([]). If p is a prime which does not divide m, then Lp is
not definable in FO + MODm[<,+].

Proof. Let Lp be definable in FO + MODm[<,+]. Since 0 is a neutral letter in
Lp, Theorem says Lp is also definable in FO + MODm[<]. Due to Lemma and
[], this is a contradiction.

It is known that languages accepted by CC0 circuits are exactly those which are
definable by LMOD[<,+, ∗] formulas []. On the other hand, it is an open question
whether the language 1∗ can be accepted by the circuit complexity class CC0 [].

To progress in this direction Roy and Straubing [] had posed the question
of whether 1∗ /∈ LMOD[<,+]. Below we show that this is the case.

Corollary 3.7. 1∗ /∈ LMOD[<,+]. In fact 1∗ /∈ LG [<,+].

Proof. The minimal monoid which can accept 1∗ is U1 and clearly the language
is in NL. By Theorem if there is a formula in LG [<,+] which can define 1∗, then
LG [<] can also define 1∗. From Lemma it follows that the monoid U1 divides a
group. But this is a contradiction [].

Behle and Lange [] give a notion of interpreting LS [<,+] as highly uniform
circuit classes. As a consequence we can interpret the following results as a separation
of the corresponding circuit classes.

Corollary 3.8. The following separation results hold, for all m > 1

• FO[<,+] 6⊆ MOD[<,+].
• MODm[<,+] 6⊆ FO[<,+].
• FO[<,+] (FO + MODm[<,+] (FO + MOD[<,+]

8 Andreas Krebs and A V Sreejith

• FO + MOD[<,+] (FO + GROUP[<,+]
• MAJ[<,+] 6⊆ FO + GROUP[<,+]

3.2. Decidability of Regular languages in LS [<,+]. We now look at regular
languages definable by the logic LS [<,+], for an S ⊆M. We first show that this logic
is closed under quotienting and under inverse length preserving morphims. We dont
give the proofs of these claims, since they follow the standard technique. One can
refer to [] for the proof.

Lemma 3.9. Let S ⊆ M and Σ be a finite alphabet. Let L ⊆ Σ∗ be definable in
LS [<,+] and u, v ∈ Σ∗. Then u−1Lv−1 is also definable in LS [<,+].

Lemma 3.10. Let S ⊆ M. Let Σ,Γ be finite alphabets and let h : Γ∗ → Σ∗ be a
homomorphism such that h(Γ) ⊆ Σr for some fixed r > 0. If L ⊆ Σ∗ is definable in
LS [<,+], then h−1(L) ⊆ Γ∗ is also definable in LS [<,+].

We now give an algebraic characterization for regular languages definable by LS [<
,+]. Recall that LS [REG] is defined as LS [<, succ,≡] where ≡ are modulo predicates.

Theorem 3.11. Let S ⊆M be a set of monoids. Let L ⊆ Σ∗ be a regular
language, which is accepted by a morphism h : Σ∗ → V, where V is a semigroup.
Then the following are equivalent.

1. L is definable in LS [<,+]
2. For all k ∈ N, every group in h(Σk) divides a monoid in bpc(S).
3. L is definable in LS [REG]

Proof. (1⇒ 2) : Consider a k ∈ N and a G ∈ h(Σk). We first look at the language
h−1(1G). It is well known (for example, []) that h−1(1G) can be written as a
finite boolean combination of languages of the form u−1Lv−1, for strings u, v ∈ Σ∗.
Now consider a new alphabet

Γ = {aw | w ∈ Σk, h(w) ∈ G}

We can now define a mapping f : Γ → Σk as f(aw) = w. Consider the language
L′ = f−1(h−1(1G)). From Lemma and Lemma we know that L′ is definable
in LS [<,+]. But note that L′ is a language with a neutral letter. The letter aw, where
h(w) = 1G acts as a neutral letter. Therefore L′ is a language definable in LS [<],
which from Krohn Rhodes theorem ?? implies that G divides a monoid in bpc(S).
(2 ⇒ 3): Let us list down all the sets, h(Σ), h(Σ2), Since the subsets of V are
finite, there exists q, r ∈ N such that h(Σq) = h(Σq+r). Choosing an l = lcm{q, r} we
get that h(Σl) = h(Σ2l). We can now split L into the following parts.

L =
⋃

u∈Σ<l

u.
(
u−1L ∩ (Σl)∗

)
Let us denote by Lu = u−1L ∩ (Σl)∗. First let us show that, if we can write Lu in
LS [REG], then we can write u.Lu also in LS [REG]. Let us assume that the sentence
φu ∈ LS [REG] models the language Lu. Let u = a1 . . . al′ , where l′ < l. Then the
following formula models the language u.Lu.

φu[> l′] ∧ a1(1) ∧ · · · ∧ al′(l′)

Now since L is a disjunction of languages of the form uLu we have that L can be
written in LS [REG].

We need to show that Lu is also definable. Consider the following alphabet
Γ = {aw | w ∈ Σl}. Let M = h(Σl). Since M = h(Σ2l) we have that M is closed

Non-definability of languages by generalized first-order formulas 9

under concatenation and therefore a monoid and hence a monoid. Therefore we have
that word problems over M are definable in LM [<]. Finally using Lemma we
get that Lu is definable in LM [REG].
(3⇒ 1): This holds, since addition can simulate all the regular predicates.

Then we can identify the set of regular languages definable in LS [<,+] when S
is a set of monoids.

Corollary 3.12. Let S be a set of monoids. Then

LS [<,+] ∩ REG = LS [REG]

Let S be a set of monoids such that, given a group G, it is decidable if G divides
a monoid in bpc(S). Then, given a regular language L, it is decidable if L ∈ LS [<].
Then our main theorem gives us that it is decidable if L ∈ LS [<,+].

Corollary 3.13. Let S be a set of monoids such that, given a monoid G, it is
decidable if G divides a monoid in bpc(S). Then, given a regular language L, it is
decidable if L ∈ LS [<,+].

Proof. Since L is a regular language definable in LS [<,+]. Then L has the
alternate characterization given by Theorem. Let h be a morphism which accepts
L. Then we know that there exists t, r ∈ N, such that h(Σt) = h(Σt+r), which implies
that we can list down all the sets in h(Σk), for k ≤ t+ r and the groups in these sets.
The claim now follows from the fact that there exists an algorithm to check whether
each of these groups divide a monoid in bpc(S).

For FO+MOD[<,+] this was proved in [] and the question when S = MOD
was left open. The following corollary answers this special case.

Corollary 3.14. Given a regular language L, the question whether L is definable
in MOD[<,+] is decidable.

4. Proof Strategy. For the purpose of proof we work over infinite strings which
contain finite number of non-neutral letters. Our general proof strategy is similar to
Benedikt and Libkin [] or Roy and Straubing [] and consists of three main
steps.

1. Given a formula φ ∈ LS [<,+], we show that φ is “weakly equivalent” to an
“active domain formula”, that is, a formula which quantify only over non-
neutral letter positions. Our major contribution (Theorem) is this step.

2. An active domain formula in LS [<,+] is weakly equivalent to an active do-
main formula in LS [<]. This step (Theorem) follows from an application
of Ramsey theory.

3. All active domain formulas in LS [<] accept languages with a neutral letter.
This is an easy observation given by Lemma.

Using these three steps we show that if a formula in LS [<,+] is weakly equivalent to
an active domain formula in LS [<], then it is infact equivalent. This proves our main
Theorem.

The major part of the work is, Step (1). There we show how to simulate a general
quantifier by an active domain formula. In the case of FO[<,+], the existential
quantifiers considered as Lindström quantifiers, have a commutative and idempotent
monoid. Hence neither the order in which the quantifier runs over the positions of
the word is important, nor does it matter if positions are queried multiple times. In
Roy and Straubing this idea was extended in such a way that in the simulation of the
MOD quantifier (again a commutative monoid), every position is taken into account
exactly once. In their construction while replacing a MOD quantifier they need to

10 Andreas Krebs and A V Sreejith

φ

LS [<,+]

φ′

acd-LS [<,+]

(Our main contribution)

weakly equivalent

φ′′

acd-LS [<]

(Ramsey Theorey)(Trivial)

equivalent

acd active domain formula

Fig. 1. The three step proof strategy.

add additional FO quantifiers and hence their construction only allows to replace a
MOD[<,+] formula by an active domain FOMOD[<,+] formula. In this paper, we
construct a formula that takes every position into account exactly once and in the
correct order. Moreover we do not introduce any new quantifier, but use only the
quantifier that is replaced. This enables us to show the Crane Beach conjecture for
logics whose quantifiers have a non-commutative monoid or are groups. For example
MOD[<,+], GROUP[<,+], and fogrp[<,+].

In contrast to previous work, we do not construct an equivalent active domain
formula, but only a formula that is equivalent for certain domains (or weakly equiv-
alent formulas). We show that it is in general sufficient to show this for one infinite
domain.

5. Proof of the Main Theorem. In this section we handle the general proof
steps as in Libkin or Roy and Straubing of removing the plus predicate from the for-
mula in the presence of a neutral letter. We show that all these results go through even
in the presence of general Lindström quantifiers. The new crucial step is Lemma
where we convert a group quantifier to an active domain formula without introducing
any other quantifiers. The proof of this lemma is deferred to the next section.

5.1. Definitions. Let S ⊆M be any nonempty set. To prove Theorem we
will consider the more general logic, LS [<,+, {≡q: q > 1}] over the alphabet Σ. In this
logic + is a binary function, and a ≡q b means q divides b−a. We will denote this logic
by LS [<,+,≡]. The relations < and ≡q are both definable using +. All languages
recognized by this logic are definable in LS [<,+]. The reason for introducing these
new relations is to use a quantifier elimination procedure.

For the purpose of the proof we assume that the neutral letter language defined
by a formula φ ∈ LS [<,+] is a subset of Σ∗λω. The idea is to work with infinite
words, where the arguments are easier, since the variable range is not bounded by the

Non-definability of languages by generalized first-order formulas 11

word length.
Definition 5.1. Let X ⊆ N be an infinite set. We say that a formula φ′ is

X-weakly equivalent to a formula φ(x1, . . . , xt) if there exists an infinite set Y ⊆ X,
such that for all words w ∈ Σ∗λω, with nnp(w) ⊆ Y and for all a1, . . . , at ∈ N, we
have that

w |= φ(a1, . . . , at)⇔ w |= φ′(a1, . . . , at)

In the above definition we say that Y collapse φ to φ′.
We say that a formula φ′ is weakly equivalent to a formula φ(x1, . . . , xt) if for

all infinite subsets X ⊆ N, there exists an infinite set Y ⊆ X, such that for all words
w ∈ Σ∗λω, with nnp(w) ⊆ Y and for all a1, . . . , at ∈ N, we have that

w |= φ(a1, . . . , at)⇔ w |= φ′(a1, . . . , at)

In this latter case we say that φ collapses to φ′. It is clear from the definition that if
φ′ is weakly equivalent to φ, then φ′ is X-weakly equivalent to φ for any infinite set
X. The other direction, namely if φ′ is X-weakly equivalent to φ need not imply that
φ′ is weakly equivalent to φ.

We now define a special class of formulas, defined syntactically.
Definition 5.2. Let an active domain formula over a letter λ ∈ Σ be a formula

where all quantifiers are of the form: QmMx ¬λ(x)〈φ1, . . . , φK〉. That is the quantifiers,
quantify only over the “ active domain”, the positions which does not contain the letter
λ. Note that an active domain formula is defined with respect to a particular letter.
Here we use the letter λ ∈ Σ, since the active domain formulas we will consider will
always be with respect to the neutral letter of the language we will be looking at.
Observe also that an active domain formula need not always define a language with
a neutral letter.

Example 3. Consider the following formula in FO[+].

∃x ¬λ(x) ∧ ∃y ¬λ(y) ∧ ∃z ¬λ(z) ((a(x) ∧ b(y) ∧ c(z)) ∧ x = y + z)

Clearly it is an active domain formula but does not define a language with a neutral
letter.

The positions in a word which the quantifiers in an active domain formula access
are going to be positions which have a non-neutral letter in it.

Definition 5.3. The non-neutral letter positions of a word, w denoted by nnp(w)
is the set of all positions where the letter λ does not appear.

nnp(w) = {i | w(i) 6= λ}

Observe that nnp(w) is also defined with respect to a letter, namely λ. Let us look
at the following example.

Example 4. Let w = aλλλbaλbλλa. Then nnp(w) = {1, 5, 6, 8, 11}.

5.2. The Proof. This subsection follows the proof outline as given in Figure.
We first show that any formula φ ∈ LS [<,+,≡] will be weakly equivalent to an

active domain formula φ′ ∈ LS [<,+,≡]. The results by Benedikt and Libkin [],
and Roy and Straubing [] show that for all formulas φ ∈ LMOD∪U1

[<,+] there
exists an active domain formula φ′ in that logic, such that for all words w ∈ Σ∗λω,
w � φ ⇔ w � φ′. They assume no restriction on the non-neutral positions of w.
Observe that our collapse result is different from theirs. We prove that if we consider

12 Andreas Krebs and A V Sreejith

only words, whose non-neutral positions come from a particular subset of N, then
φ ∈ LS [<,+] is equivalent to an active domain formula φ′ ∈ LS [<,+,≡]. That is, we
are not concerned about the satisfiability of those words whose non-neutral positions
are not from that particular subset.

Let us first consider formulas with an outermost group quantifier, G ∈ S.

Lemma 5.4. Let φ = QmGz〈φ1, . . . , φK〉 be in LS [<,+,≡]. Let us assume that
there exists active domain formulas φ′1, . . . , φ

′
k in the same logic such that for all i ≤ K

we have φi is weakly equivalent to φ′i.
Then φ is weakly equivalent to an active domain formula φ′ ∈ LS [<,+,≡].

The proof of Lemma will be given in Section. Benedikt and Libkin []
gives a similar theorem for the monoid U1 (the existential quantifier).

Lemma 5.5 ([]). Let φ = Q1
U1
z〈φ1〉 be a formula in LS [<,+,≡]. Let us

assume that the formula φ1 is weakly equivalent to an active domain formula φ′1 in
the same logic.
Then φ is weakly equivalent to an active domain formula φ′ ∈ LS [<,+,≡].

The following theorem proves the first step of our 3 step proof strategy of Figure1.

Theorem 5.6. Let φ ∈ LS [<,+,≡]. Then there exists an active domain formula
φ′ ∈ LS [<,+,≡] such that φ is weakly equivalent to φ′.

Proof. Let φ ∈ LS [<,+,≡]. We first claim that we can convert φ into a formula
which uses only groups and U1 as quantifiers. This follows from the Krohn-Rhodes
decomposition theorem for monoids that every monoid can be decomposed into block
products over groups and U1. This decomposition can then be converted back into a
formula using the groups and U1 as quantifiers [].

So without loss of generality we can assume φ has only group or U1 quantifiers.
The proof is by induction on the quantifier depth. For the base case, let φ be a
quantifier free formula. It is an active domain formula and therefore the claim holds.
Let the claim be true for all formulas with quantifier depth < d. Lemma and
Lemma show that the claim is true for formulas of type φ = QmMz〈φ1, . . . , φK〉
with quantifier depth d, when M is a group or U1 respectively. We are now left with
proving that the claim is closed under conjunction and negation. So assume that
formulas φ1, φ2 is weakly equivalent to φ′1, φ

′
2 respectively. That is, for all X ⊆ N,

there exist Rφ1
⊆ X,Rφ2

⊆ Rφ1
such that Rφ1

is weakly equivalent to φ1 to φ′1 and
Rφ2

collapses φ2 to φ′2. Then it is easy to see that Rφ2
collapses φ1 ∧ φ2 to φ′1 ∧ φ′2

and Rφ1
collapses ¬φ1 to ¬φ′1.

We have shown above that all formulas in LS [<,+,≡] can be collapsed to active
domain formulas. Now using a Ramsey type argument we obtain that addition is
useless, giving us a formula in LS [<]. This corresponds to the second step in our
three step proof strategy.

Let R be any set of relations on N and let φ(x1, . . . , xt) be an active domain
formula in LS [R]. Let X ⊆ N be an infinite set. Then there exists a formula φ′ in
LS [<] such that φ is X-weakly equivalent to φ′.

Weak equivalence for first order logic has been considered by Libkin [], where
the notion of weak equivalence is known as Ramsey property . We show that this result
can be extended to our logic.

Theorem 5.7. Let R be a set of relations on N. Let X ⊆ N be an infinite
set. Then every active domain sentence in LS [R] is X-weakly equivalent to an active
domain formula in LS [<].

Proof. Let φ ∈ LS [R] be an active domain sentence. We now prove by induction

Non-definability of languages by generalized first-order formulas 13

on the structure of the formula. Let P (x1, . . . , xk) be a term in φ. Consider the infinite
complete hypergraph, whose vertices are labelled by numbers from X and whose edges
are all k tuple of vertices. Let P (a1, . . . , ak) be true, for a1, . . . , ak ∈ X and let the
order type of a1, . . . , ak be o. Then we color the edge (a1, . . . , ak) by the quantifier
free formula on x1, . . . , xk which describes the order type o. For example, if the order
type is a2 = a3 < a1 < · · · < ak, then the formula will be x2 = x3 < x1 < · · · < xk.
Observe that an edge can have multiple colors but the total number of different
colorings possible is dependent only on k (a constant). Ramsey theory, now gives us
that there exists an infinite set Y ⊆ X, such that the induced subgraph on the vertices
in Y will have a monochromatic color, ie. all the edges will be colored using the same
color or in other words, there exists an order type which is true for all the edges in
this subgraph. Let us assume that the edges in Y are colored x1 < x2 < · · · < xk.
Then for all a1, . . . , at ∈ Y

a1, . . . , at |= P (x1, . . . , xk)⇔ a1, . . . , at |= x1 < x2 < · · · < xk

This shows that P (x1, . . . , xk) satisfies the Ramsey property and thus all atomic for-
mulas satisfy the Ramsey property. We now show that Ramsey property is preserved
while taking Boolean combination of formulas. Consider the formula φ1(x1, . . . , xk)∧
φ2(x1, . . . , xk). We know that by induction hypothesis there exists a formula ψ1

and an infinite set X such that for all a1, . . . , at ∈ X, w |= φ1(a1, . . . , at) ⇔ w |=
ψ(a1, . . . , at). We can now find an infinite set Y ⊆ X and a formula ψ2 such that the
Ramsey property holds for the formula φ2. Therefore for all a1, . . . , at ∈ Y

w, a1, . . . , ak � φ1 ∧ φ2 ⇔ w, a1, . . . , ak � ψ1 ∧ ψ2

Similarly we can show that the Ramsey property holds for disjunctions and nega-
tions. We need to now show that active domain quantification also preserves Ramsey
property. So let X be an infinite subset of N and let

φ(~x) = QmMz ¬λ(z) 〈φ1(z, ~x), . . . , φK(z, ~x)〉

be a formula in LS [R]. By induction hypothesis we know that there exists an infinite
set Y1 ⊆ X and an active domain formula ψ1 ∈ L[<] such that for all ~a ∈ Y t1
the Ramsey property is satisfied. That is w |= φ1(~a) ⇔ w |= ψ1(~a). Now for
φ2, using the infinite set Y1 we can find an infinite set Y2 ⊆ Y1 and a formula ψ2

satisfying the Ramsey property. Continuing like this will give us a set YK and formulas
ψ1, . . . , ψK such that ∀j ≤ K and for all w ∈ Σ∗λω with nnp(w) ⊆ YK , we have that
∀b ∈ YK ,~a ∈ Y tK , w � φj(b,~a)⇔ w � ψj(b,~a). Hence we also have that ∀j ≤ K

{b ∈ YK | w � φj(b,~a)} = {b ∈ YK | w � ψj(b,~a)}

Therefore for the formula ψ = QmMz ¬λ(z) 〈ψ1, . . . , ψK〉, we have ∀w where nnp(w) ⊆
YK and a1, . . . , at ∈ YK that

w � φ(a1, . . . , at)⇔ w � ψ(a1, . . . , at)

Observe that ψ is an active domain formula in LS [<].
We continue with the third step of our three step proof strategy.
Lemma 5.8. Every active domain sentence in LS [<] define a language with a

neutral letter.

14 Andreas Krebs and A V Sreejith

Proof. Let φ ∈ LS [<] be an active domain formula over letter λ ∈ Σ. Let w ∈ Σω.
Let w′ ∈ Σω got by inserting letter λ in w at some positions. Let n1 < n2 < . . .
belong to nnp(w) and m1 < m2 < . . . be in nnp(w′). Let ρ : nnp(w) → nnp(w′)
be the bijective map ρ(ni) = mi. We show that for any subformula ψ of φ and any
~t ∈ nnp(w)s, we have that w,~t � ψ ⇔ w′, ρ(~t) � ψ. Since the variables quantifier
only over the active domain, the claim holds for the atomic formula x > y, because
ni > nj iff ρ(ni) > ρ(nj) for any i, j. Similarly the claim also hold for all other atomic
formulas x < y, x = y and a(x) for an a ∈ Σ. The claim remains to hold under
conjunctions, negations and active domain quantifications. Hence w |= φ ⇔ w′ |= φ.
This proves that λ is a neutral letter for L(φ).

Now we can prove our main theorem. This step shows that if an active domain
formula φ′ ∈ LS [<] is X-weakly equivalent to a formula φ ∈ LS [<,+] then φ′ is infact
equivalent to φ.

Proof. [Proof of Theorem] Let φ ∈ LS [<,+], such that L(φ) is a language
with the neutral letter, λ. By Theorem there exists an active domain sentence
φ′ ∈ LS [<,+,≡] and a set R ⊆∞ N such that R collapses φ to φ′. Theorem now
gives an active domain formula ψ ∈ LS [<] and an infinite set Y ⊆∞ R such that ψ is
Y -weakly equivalent to φ′. We now show that L(φ) = L(ψ). Let w ∈ Σ∗λω. Consider
the word w′ ∈ Σ∗λω got by inserting the neutral letter λ in w in such a way that
nnp(w′) ⊆ Y . Since L(φ) is a language with a neutral letter we have that w |= φ ⇔
w′ � φ. From Theorem and Theorem we get w′ � φ ⇔ w′ � φ′ ⇔ w′ � ψ.
Finally as shown in Lemma, ψ defines a language with a neutral letter and hence
w′ |= ψ ⇔ w |= ψ.

6. Proof of Lemma. In this section we replace a group quantifier by an
active domain formula. Here we make use of the fact that we can a priory restrict our
domain as shown in the previous section.

Recall that φ = QmGz〈φ1, . . . , φK〉 and G = {m1, . . . ,mK , 1}. Let X ⊆ N be an
arbitray infinite set. We show that there exists an infinite set Rφ ⊆ X and an active
domain formula φ′ ∈ LS [<,+,≡] such that Rφ collapse φ to φ′. By the assumption of
the Lemma, we know that for all i ≤ K, there exists active domain formulas φ′i such
that φi is weakly equivalent to φ′i. Therefore there exists an infinite set Rφ1 ⊆ X such
that for all words w where nnp(w) ⊆ Rφ1 we have that w |= φ1 ⇔ w |= φ′1. Similarly
we can find infinite sets RφK ⊆ RφK−1

⊆ · · · ⊆ Rφ1
⊆ X such that for all i ≤ K, and

for all words w where nnp(w) ⊆ RφK , we have that w |= φi ⇔ w |= φ′i. So without
loss of generality we assume φis are active domain formulas. In this section, we will
find an active domain formula φ′ and an infinite set Rφ ⊆ RφK , such that φ is weakly
equivalent to φ′.

Before we go in the details we will give a rough overview of the proof idea. The
group quantifier evaluates the product

∏
j u(j), where u(j) is a group element that

depends on the set of i such that w, j |= φi. So we start and analyze the sets
Ji = {j | w, j |= φi}. Since the formulas φis are active domain formulas, we will see
that there are certain positions in the word called “boundary points” which are crucial.
We see that in between two boundary points, the set Ji is periodic. In the construction
of the active domain formula for φ we show how to iterate over these boundary points
in a strictly increasing order. An active domain quantifier can only iterate over active
domain positions, hence we will need nested active domain quantifiers, and a way how
to “encode” the boundary points by tuples of active domain positions in a unique and
order preserving way. Additionally we need to deal with the periodic positions inside
the intervals, without being able to compute the length of such an interval, or even

Non-definability of languages by generalized first-order formulas 15

check if the length is zero. Here will make use of the inverse elements that always
exist in groups.

We start by analyzing the intervals which occur. Since we consider a fixed set S
for the rest of the paper, we will write L[<,+] for the logic LS [<,+, 0, {≡q: q > 1}].

6.1. Intervals and Linear Functions. We first show that every formula ψ
with at least one free variable has a normal form. This step is a standard procedure
in Presburger’s quantifier elimination technique [],[].

Lemma 6.1. Let ψ(z) ∈ L[<,+]. Then there exists a formula ψ̂(z) ∈ L[<,+]

such that ψ is equivalent to ψ̂, where all atomic formulas in ψ̂ with z are of the form
z > ρ, z = ρ, z < ρ, z ≡n ρ, where ρ is a linear function on variables other than z.

Proof. Terms in our logic are expressions of the form

α0 + α1x1 + · · ·+ αsxs ,where αi ∈ N

and atomic formulas are of the form

σ = γ, σ < γ, σ > γ, σ ≡m γ, c(σ)

whee σ, γ are linear functions, c ∈ Σ and m > 1.
Now using any M ∈ S, where m1 ∈ M is not the identity element, we can rewrite
c(σ) by an equivalent formula

Qm1

M x ¬λ(x)〈(x = σ) ∧ c(x), false, . . . , false〉

Now consider the atomic formulas containing the free variable z in ψ(z). By mul-
tiplying with appropriate numbers, we can re-write these atomic formulas as nz =
ρ, nz < ρ, nz > ρ, nz ≡l ρ for one particular n, which is the least common multiple
(lcm) of all the coefficients in ψ. Here ρ does not contain z and also it might contain
subtraction. That is nz = ρ might stand for nz + ρ1 = ρ2. Now we replace nz by z
and conjunct the formula with z ≡n 0.

For any formula ψ(z), the notation ψ̂(z) denotes the normal form as in Lemma6.1. Let x1, . . . , xs be the bounded variables occurring in φ̂i(z) and y1, . . . , yr be the

free variables other than z in φ̂i(z). Hence the terms ρ that appear in the formula

φ̂i(z) can be identified as functions, : Ns+r → N.

We collect all functions ρ(~x, ~y) that occur in the formulas φ̂i(z) for an i ≤ K:

R = {ρ | where ρ is a linear term occurring in φ̂i(z), i ≤ K}

We define the set T of offsets as a set of terms which are functions using the variables
y1, . . . , yr as parameters:

T = {ρ(0, . . . , 0, y1, . . . , yr) | ρ ∈ R} ∪ {0}

Consider the set of absolute values of all the coefficients appearing in one of the
functions in R. Let α′ ∈ N be the maximum value among these. That is α′ =
max{|γ| | f ∈ R, γ is a coefficient in f}. Let ∆ = s · α′. Now we can define our set
of extended functions. For a t ∈ T we define a set of terms which are functions using
the variables x1, . . . , xs, y1, . . . , yr as parameters:

Ft =
{ s′∑

i

αixi + t | s′ ≤ s,−∆ ≤ αi ≤ ∆, αi ∈ N
}
.

16 Andreas Krebs and A V Sreejith

d1 d2

Fig. 2. The up arrows point to the active domain and the boxes are the boundary points, Bw,~a.
We have marked two points d1 and d2 in the same interval. All points in an interval has the neutral
letter.

We denote by F = ∪t∈TFt.
For a fixed word w ∈ Σ∗λω and a fixed assignment of the free variables ~y to ~a we

let

Bw,~a = {f(~d,~a) | t ∈ T, f ∈ Ft, ~d ∈ nnp(w)s
′
, d1 > d2 > · · · > ds′}

be the set of boundary points. Note that the assignments to the functions are of
strictly decreasing order. Let

b1 < b2 < . . . < bl

be the boundary points in Bw,~a. Then the following sets are called intervals:

(0, b1), (b1, b2), . . . , (bl−1, bl), (bl,∞)

Here (a, b) = {x ∈ N | a < x < b} and (bl,∞) is called the infinite interval . We also
split the set of points in Bw,~a depending on the offset

Bw,~at = {f(~d,~a) | f ∈ Ft, ~d ∈ nnp(w)s
′
, d1 > d2 > · · · > ds′}.

We fix a word w ∈ Σ∗λω and an ~a ∈ Nr. Therefore we drop the superscripts in
Bw,~a (Bw,~at) and call them B (Bt). Figure illustrates some of the definitions.

The following lemma shows that all points the linear terms in φ̂is point to are in
Bw,~a.

Lemma 6.2. {ρ(d1, . . . , ds,~a) | ρ ∈ R, di ∈ nnp(w)} ∪ nnp(w) ⊆ Bw,~a
Proof. Let S = {ρ(d1, . . . , ds,~a) | ρ ∈ R, di ∈ nnp(w)}∪nnp(w). Since ρ(x1) = x1

is in Ft, for some t ∈ T , we have nnp(w) ⊆ Bw,~a. Let b ∈ S. Then there is

a function ρ =
∑s′

i αixi + t(~y) in Ft and values p1, . . . , ps′ ∈ nnp(w) such that
b = ρ(p1, . . . , ps′ ,~a). Let p′1 > p′2 > · · · > p′l be the ordered set of all pis in the above
assignment. We let ρ′(x1, . . . , xl) =

∑
i βixi + t, where βi =

∑
j:pj=p′i

αj . Therefore

b = ρ′(p′1, . . . , p
′
l). Since |βi| ≤ ∆ · s we have ρ′ ∈ Ft and hence b ∈ Bw,~at .

Let us try to understand the definitions and the lemma seen above. Note that all
the quantifiers in φ̂is are active domain quantifiers. Thus the bounded variables in φ̂is
will only be evaluated at the active domain points in w. Now consider a linear term
ρ(x1, . . . , xs, y1, . . . , yr) present in one of the φ̂is. Observe that once we assign the
free variables to ~a, then the bounded variables x1, . . . , xs will run over all the active
domain points in w. We therefore look at all the points ρ points to, if its bounded
variables x1, . . . , xs are assigned values from nnp(w). The importance of these points
will be clear once we see Lemma. Lemma shows that all such points are

Non-definability of languages by generalized first-order formulas 17

infact inside the set Bw,~a. That is Bw,~a over-approximates the set of points we want.
Lemma also shows that the over-approxmiation also preserves the properties we
are looking for. Later we will see that this over-approximation is more suitable to
build active domain formulas which are weakly equivalent to φ.

Let q be the lcm of all q′ where ≡q′ occurs in one of the φi. We need the following
lemma, that inside an interval with only neutral letters, the congruence relations
decide the truth of an active domain formula.

Lemma 6.3. For the fixed word w and a1, . . . , ar ∈ N and let c, d ∈ N belong to
the same interval in Bw,~a such that c ≡q d. Then for all i ≤ K: w, c � φi(z,~a) ⇔
w, d � φi(z,~a).

Proof. Proof is by induction on the structure of the formula φ̂i. We will now show
that ∀bi ∈ nnp(w) and all subformulas ψ(z, ~x, ~y) of φ̂i that w, c,~b,~a � ψ ⇔ w, d,~b,~a �
ψ. The atomic formulas of φ̂i(z,~a) are of the following form: z < ρ(~x,~a), z =
ρ(~x,~a), z > ρ(~x,~a), z ≡q′ ρ(~x,~a), a(z) and formulas which does not depend on z. It is
clear that the truth of formulas which does not depend on z, a(z) and z ≡q′ ρ does
not change whether we assign c or d to z. For example, w, c |= a(z) ⇔ w, d |= a(z),

since inside an interval we see only the neutral letter. Let ~b ∈ nnp(w)s. By Lemma6.2 we know that ρ(~b,~a) is in Bw,~a and since c, d lies in the same interval it follows

that c < ρ(~b,~a) ⇔ d < (~b,~a). Similarly we can show that the truth of z > ρ, z = ρ
does not change on z being assigned c or d. Thus we have that the claim holds for
atomic formulas. The claim clearly holds for conjunction and negation of formulas.
Now let the claim hold for subformulas ψ1, . . . , ψK . Therefore ∀i ≤ K we have that
{~b ∈ nnp(w)s | w, c,~b,~a � ψi} = {~b ∈ nnp(w)s | w, d,~b,~a � ψi}. Therefore we have
that

w, c, b2, . . . , bs,~a � QmMx ¬λ(x)〈ψ1, . . . , ψK〉
⇔ w, d, b2, . . . , bs,~a � QmMx ¬λ(x)〈ψ1, . . . , ψK〉

And hence it is closed under active domain quantification.

The above lemma says that the two points d1 and d2 in Figure satisfy the same
set of formulas φi if d1 ≡q d2. In other Lemma says that inside an interval, only
the congruence relations can change the satisfiability of the φis. Thus, it is enough to
know the truth values of φi at a distance of ≥ q from the boundary points, since the
truth values inside an interval are going to repeat after every q positions.

The following Lemma deals with the infinite interval.
Lemma 6.4. Let b belong to the infinite interval and ~a ∈ Nr. If w,~a � φ then

w, b,~a 2 φi for any i ≤ K.
Proof. Let i ≤ K and b be in the infinite interval and w, b,~a � φi. From Lemma6.3 we know that all points c ≡q b and such that c is also in the infinite interval will

be a witnesses for φi. This means the set of witnesses is infinite and hence w,~a 2 φ.

Let us first understand the importance of Lemma and. Recall from the
Preliminaries (Section) that we denoted by u(i) the group element at position i.
That is

u(i) = mj iff w,~a |= φj ∧
∧
l<j

¬φl

For a b ∈ B, we define the function IL(b) to be the length of the interval to the left of
b. That is if (b′, b) form an interval then IL(b) = b− b′ − 1. Similarly we define IR(b)

18 Andreas Krebs and A V Sreejith

active domain

q|G|

boundary points

Fig. 3. The only points of interest in a word are a fixed area around the boundary points
(shaded area shown here). The length of the unshaded area is congruent to W = q|G|.

to be the length of the interval to the right of b. Let W = q|G|. We now define two
group values.

Post(b) =

u(b+ 1)u(b+ 2) . . . u(b+ IR(b)) if IR(b) < W

u(b+ 1)u(b+ 2) . . . u(b+ r)

if IR(b) ≥W and r < W, b+ r ≡W 0

Pre(b) =

1G if IL(b) < W

u(b− r + 1) . . . u(b− 1)

if IL(b) ≥W and r < W, b− r ≡W 0

We define

N0(b) = Pre(b).u(b).Post(b)

The Figure shows the important points around the boundary points. The following
Lemma shows that a finite interval around the boundary points are the “only” points
of interest to us.

Lemma 6.5. Let us assume that for all b ∈ N in the infinite interval, u(b) = 1G.
Then

∞∏
i=1

u(i) =
∏
i∈B

N0(i)

Proof. Let b0 < b1 < · · · < bx be the positions in B. Then

(6.1)

bx∏
b=b0

N0(b) = Pre(b0)u(b0)

(
x−1∏
i=0

Post(bi)Pre(bi+1)u(bi+1)

)
Post(bx)

Now consider an interval (bi, bi+1). We show that Post(bi)Pre(bi+1) =
∏bi+1−1
j=bi+1 u(j).

There are two cases to consider
• Case bi+1 − bi < W : Then

Post(bi)Pre(bi+1) =
(
u(b+ 1)u(b+ 2) . . . u(b+ IR(b))

)
(1G) =

bi+1−1∏
j=bi+1

u(j)

Non-definability of languages by generalized first-order formulas 19

• Case bi+1 − bi ≥ W : Let s, t ∈ N, be such that s, t < W and bi + s ≡W
bi+1 − t ≡W 0. Lemma shows that inside an interval all positions con-
gruent modulo q satisfy the same formulas and hence the product of group
elements of any W = q|G| consecutive positions evaluate to the identity ele-
ment. Therefore u(bi + s+ 1)u(bi + s+ 2) . . . u(bi+1 − t) = 1G. So

Post(bi)Pre(bi+1) =
(
u(bi+1)u(bi+2) . . . u(bi+s)

)(
u(bi+1−t+1) . . . u(bi+1−1)

)
=

bi+1−1∏
j=bi+1

u(j)

Now substituting the value of Post(bi)Pre(bi+1) for all i < x on equation will give
us the claim.

We view N0(b) as a group value at a point b. Observe that the cardinality of B is
finite, even though it might depend on the length of the word w. The following lemma
helps us understand when does w be a model of φ. Recall that φ = QmGz〈φ1, . . . , φK〉.

Lemma 6.6.

w,~a |= φ⇔
∏
i∈B

N0(i) = m and for all b in the infinite interval u(b) = 1G

Proof. (⇒) : Since w |= φ(~a) we have by Lemma that for all b in the infinite
interval u(b) = 1G. Then the claim follows from Lemma.
(⇐) : Let the right side be true. Then by Lemma we have that

∏∞
i u(i) = m.

The claim now follows from the definition of the group quantifier.
So it remains to show that there exists an active domain formula which can

multiply the group values N0(i) in the correct order and also that there exists an
active domain formula to check whether u(b) = 1, for all b in the infinite interval.
The major part of the work is in showing the former. For this we need to go through
the points in B in an increasing order. The rest of the proof demonstrates

1. How we can treat each Bt differently.
2. There is an active domain formula which goes through the points in Bt in an

increasing order

6.2. Treating each Bt differently. Recall the definition of N0(b) from the
previous section.

Our aim is to give an active domain formula such that the formula evaluates to
true iff the group element

∏
i=0 u(i) is equal to m. The rest of this subsection will be

devoted to computing this product in a way which helps in building an active domain
formula.

Let b < b′ be boundary points in B. Below we compute
∏b′−1
i=b N0(i) in a different

way:

b′−1∏
i=b

N0(i) =
∏
i≥b

N0(i)

∏
i≥b′

N0(i)

−1

.

Observe that we can compute the product of the interval using two terms that both
need to know only one boundary of the interval. It becomes simpler if we note that
the two products do not really need to multiply all the elements u(i), for i ≥ b′ but
simply agree on a common set of elements to multiply.

20 Andreas Krebs and A V Sreejith

g1

d1

g2

d2

g3

d3

B1 boundary points

h1 h2 h3 h4 h5 h6

B2 boundary points

Fig. 4. Boundary points and group values there.

The following example will help us understand the method better. Consider
Figure. The arrows point to boundary points. The bold arrows point to the
boundary points B1 and the dashed arrows point to the boundary points B2. Consider
the point marked d1 and our aim is to compute the product of the group elements to
the right of it. We compute the product in the following way.

• nd1
= Product of group elements in B2 > d1 = h2.h3.h4.h5.h6.

• nd2
= Product of group elements in B2 > d2 = h3.h4.h5.h6.

• nd3
= Product of group elements in B2 > d3 = h5.h6.

• md1
= (Group element at d1)×nd1

= g1.h2.h3.h4.h5.h6.
• md2 = n−1

d2
×(Group element at d2) ×nd2 = (h3.h4.h5.h6)−1g2(h3.h4.h5.h6).

• md3 = n−1
d3
× (Group element at d3) ×nd3 = (h5.h6)−1g3(h5.h6)

• md1 .md2 .md3 gives product of group elements in interval [d1,∞) = g1.(h1).g2.(h3.h4).g3.(h5.h6).
In the above example we inductively assumed that, starting from any point d1, we
know the product

∏
i∈B2,i>d1

u(i). We show that if we can go through the boundary
points in B1 in an increasing order, then we can compute the product of the group
elements at both B1 and B2.

We now formalize the above idea. Firstly we define functions which computes the
product of the group values for the set Bt1 .

N1(b) =
∏

b′∈Bt1
b′≥b

N0(b′)

N̂1(b) =
∏

b′∈Bt1
b′>b

N0(b′)

Note that N1(b) computes the product of group values at positions greater than or
equal to b, whereas N̂1(b) computes the product of group values strictly greater than
b. Inductively we define, for all k, such that 1 ≤ k ≤ |T |.

Nk(b) = Nk−1(b)
∏

b′∈Btk
b′≥b

(Nk−1(b′))
−1
N0(b′)N̂k−1(b′)

N̂k(b) = N̂k−1(b)
∏
b∈Btk
b′>b

(Nk−1(b′))
−1
N0(b′)N̂k−1(b′)

The following lemma shows that Nk(b) computes the product of group values at
positions in ∪j≤kBtj , which are greater than or equal to b. On the other hand N̂k(b)

Non-definability of languages by generalized first-order formulas 21

computes the product of group values at positions in ∪j≤kBtj which are strictly greater
than b.

Lemma 6.7. Let k be such that 1 ≤ k ≤ |T |. Let b ∈ N. Then

Nk(b) =
∏
d≥b

d∈∪j≤kBtj

N0(d)

N̂k(b) =
∏
d>b

d∈∪j≤kBtj

N0(d)

Proof. We prove both the equations by induction over k. The base case, that is
when k = 1 is true by the definition of N1(b). So let us assume that the claim is true
for k − 1.

Then, we have for a b ≤ b′.

Nk−1(b). (Nk−1(b′))
−1

=

 ∏
d≥b

d∈∪j<kBtj

N0(d)

 .

 ∏
d≥b′

d∈∪j<kBtj

N0(d)

−1

=

b′−1∏
d=b

d∈∪j<kBtj

N0(d)(6.2)

For a b < b′ we also have that.

N̂k−1(b). (Nk−1(b′))
−1

=

 ∏
d>b

d∈∪j<kBtj

N0(d)

 .

 ∏
d≥b′

d∈∪j<kBtj

N0(d)

−1

=

b′−1∏
d>b

d∈∪j<kBtj

N0(d)(6.3)

We need to now prove the second equality. Let b ≤ b0 < b1 < · · · < bx−1 < bx be all
positions in Btk . Writing out the product we get

Nk(b) = Nk−1(b) (Nk−1(b0))
−1

(
x−1∏
i=0

N0(bi) N̂k−1(bi) (Nk−1(bi+1))
−1

)
N0(bx)N̂k−1(bx)

Substituting the equations and in the above equation gives us the following
formula.

Nk(b) =

 b0−1∏
d=b

d∈∪j≤kBtj

N0(d)

x−1∏
i=0

N0(bi)

 bi+1−1∏
d>bi

d∈∪j≤kBtj

N0(d)

(N0(bx)N̂k−1(bx)

)

=
∏
d≥b

d∈∪j≤kBtj

N0(d)

22 Andreas Krebs and A V Sreejith

Similarly we get that

N̂k(b) = N̂k−1(b) (Nk−1(b0))
−1

(
x−1∏
i=0

N0(bi) N̂k−1(bi) (Nk−1(bi+1))
−1

)
N0(bx)N̂k−1(bx)

=

 b0−1∏
d>b

d∈∪j≤kBtj

N0(d)

x−1∏
i=0

N0(bi)

 bi+1−1∏
d>bi

d∈∪j≤kBtj

N0(d)

(N0(bx)N̂k−1(bx)

)

=
∏
d>b

d∈∪j≤kBtj

N0(d)

Thus the claim is true for all k. Observe that in the above lemma Nk(b) compute the
product of group elements at positions greater than or equal to b in the set ∪j≤kBtj ,
whereas N̂k(b) compute the product of group elements at positions strictly greater
than b in the set ∪j≤kBtj .

The following Lemma shows that N|T |(1) gives the product of the group elements.

Lemma 6.8. We have that N|T |(1) =
∏
i∈B N0(i).

Proof. This follows from Lemma.
We now give active domain formulas γm, m ∈ G, such that γm is true iff N|T |(0) =

m. For this we make use of the inductive definition of Nk and show that there exists
active domain formulas γm such that w |= γm(b) ⇔ Nk(b) = m. Similarly we give
active domain formulas γ̂m such that w |= γ̂m(b)⇔ N̂k(b) = m. Observe that Nk(b)

is got by computing the product of
(
N̂k−1(b′)

)−1

u(b′)Nk−1(b′), over b′, where b′

strictly increases. This requires us to traverse the elements in Btk−1
in an increasing

order. The following section builds a Sorting tree to sort the elements of Btk−1
in an

increasing order.

6.3. Sorting Tree. Let t ∈ T . The aim of this section is to create a data
structure, which can traverse the elements in Bt in an ascending order. Note that the
active domain formulas can only “access” the active domain of the word. But what
we need is to access the boundary points. We know that if we assign the variables in
a linear term to active domain points, then we can get hold of the boundary point.
Thus we can built active domain quantifiers which can iterate through the active
domain points of the word, compute the boundary point and generate a group value
associated at that particular point. So the first “idea” will be to use active domain
quantifiers for all variables appearing in the linear terms. But can we get the active
domain points in an ordered way?

The following example will give an intution of the problem and the solution.
Example 5. Consider two linear equations 2y1 + y2 and y1 + 5y2, with the yis

being bounded variables. Thus they get assigned from the active domain of the word.
Let the active domain of a word w be D = {5, 10, 15}. Then the boundary points are

15, 30, 20, 55, 25, 80, 25, 35, 30, 60, 35, 85, 35, 40, 40, 65, 45, 90

if we assign the two variables (y1, y2) from D in the following order:

(5, 5), (5, 10), (5, 15), (10, 5), (10, 10), (10, 15), (15, 5), (15, 10), (15, 15)

Non-definability of languages by generalized first-order formulas 23

r1 r2 r3

Fig. 5. The points marked are the active domain points

Observe that if we follow the particular ordering, then the boundary points, BP is not
generated in the order we would want it to be (since it is not in ascending order).
We also see that there is repetition of occurrences of boundary points. Thus if we
generate the group values in this ordering and compute its product, we would not get
the required product. Since we might be looking at non-commutative groups, we need
to ensure that BP is generated in an ascending order.

Here is the solution we propose. We rename the variables and generate the fol-
lowing linear terms:

ρ1 = 2x1 + x2, ρ2 = x1 + 2x2, ρ3 = x1 + 5x2, ρ4 = 5x1 + x2

The first and third got by replacing y1 by x1 and y2 by x2. The second and fourth are
got by replacing y1 by x2 and y2 by x1. Now we make use of the fact that we have
the leeway to choose D, the active domain. We will assume that the active domain
points we choose are very far from each other. Thus, for any assignment to the xis
such that x1 >> x2 we have

5x1 + x2 > 2x1 + x2 > x1 + 5x2 > x1 + 2x2

Thus we have an ordering for any fixed assignment of the xis. Now we fix an ordering
among different assignments of xis. Consider the figure, where the active domain
points are marked r1, r2, r3. Let us look at one of the linear terms, say ρ1(x1, x2).
Then we have

ρ1(r3, r3) > ρ1(r3, r2) > ρ1(r3, r1) > ρ1(r2, r2) > ρ1(r2, r1) > ρ1(r1, r1)

since r3 >> r2 >> r1. Note that x1 ≥ x2 always. That is we do not consider the
points generated by x1 < x2. But observe that since ρ1(x1, x2) = ρ2(x2, x1) we will be
looking at all the boundary points, even if we restrict our variables to this ordering.
We generalize the idea in the above example. In general we need to worry about not
two, but a fixed number of linear terms. Also the linear terms might have negated
variables.

To take care of this general situation, we define a tree called sorting tree, Tt which
corresponds to the set Bt. The tree satisfies the following property: If the leaves of
the tree are enumerated from left to right, then we get the set Bt in ascending order,
provided the active domain for the word is choosen judiciously. We will first give the
construction of the tree and then the active domain Rφ.
Sorting Tree: A node in Tt is labeled by a tuple (f,A), where f(x1, . . . , xl) is a function
in Ft, A an assignment for the variables in f such that A(x1) > A(x2) > · · · > A(xl)
and ∀i ≤ l : A(xi) ∈ nnp(w).

We show how to inductively built the tree. The root is labeled by the tuple (t, {}),
where t is the function which depends only on ~y (and hence constant on ~x) and {}
is the empty assignment. The root is not marked a leaf node. Consider the internal
node (f(x1, . . . , xl), A). It will have three kinds of children ordered from left to right
as follows.

24 Andreas Krebs and A V Sreejith

Fig. 6. Sorting Tree: The double circles represent leaves of the tree. The nodes of the tree
are labelled (f,A), where A is an assignment for the function f and t = 0. For better presentation
we only show the assignment to the newly introduced variable in a node. For example, the tuple
(x− 2y, 25) assigns x = 625 and y = 25. The assignment to x is given in the node’s parent.

1. Left children: These are labeled by tuples of the form (f ′α, A
′
j) where

f ′α(x1, . . . , xl+1) = f(x1, . . . , xl) + αxl+1 and −∆ ≤ α < 0,−α ∈ N

A′j = A ∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w)

The left children are now ordered as follows. The tuple (f ′α1
, A′j1) is on the

left of (f ′α2
, A′j2) if j1 > j2 or if j1 = j2 and α1 < α2.

2. Middle child: It is labeled by the tuple (f ′′, A) where f ′′(x1, . . . , xl) = f(x1, . . . , xl).
It is marked a leaf node.

3. Right children: These are labeled by tuples of the form (f ′α, A
′
j) where

f ′α(x1, . . . , xl+1) = f(x1, . . . , xl) + αxl+1 and 0 < α ≤ ∆, α ∈ N

A′j = A ∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w)

The children are now ordered as follows. The tuple (f ′α1
, A′j1) is on the left

of (f ′α2
, A′j2) if j1 < j2 or j1 = j2 and α1 < α2.

Observe that if there is no j such that j < A(xl) and j ∈ nnp(w), then (f,A) will
only have the single child (f ′′, A). The tree is built until all functions with s variables
appear in leaves and hence the depth of the tree is s+ 2.
Active domain: The infinite set Rφ ⊆ RφK satisfies the following property: Any two
points a < b in Rφ is such that b ≥ a(4s∆). The idea is to ensure that the active
domain points are “far” enough to satisfy the nice properties we will soon see. Note
that there always exists an infinite set with the above property. We pick any set
which satisfies this property and call it Rφ. Such an active domain will ensure that
the values of the leaves of the tree increases from left to right.

Let us look at the following example. Figure shows part of a tree, where ∆ = 2,
t = 0 and nnp(w) = {5, 25, 625}. Note that the values of the leaves of tree is in
ascending order.

Non-definability of languages by generalized first-order formulas 25

Let R = 4s∆. Let us also assume that nnp(w) ⊆ Rφ. Given a node (f,A), we say
the value of the node is the function f evaluated under the assignment of A (denoted
by f(A)).

Lemma 6.9. Let N be an internal node labeled by a function f(x1, . . . , xl) with
l < s and an assignment A. If A(xl) = n, then the children of this node have values
in the range [f(A) − ∆

Rn, f(A) + ∆
Rn]. Moreover the values of the children increases

from left to right.

Proof. The range is given by the construction. Let us look at the case when both
α1 and α2 are negative. The other cases are similar to this case or are trivial. There
are two cases to consider now. If j1 > j2, then R.j2 ≤ j1. Therefore |α2|.j2 ≤ j1 and
since both the αis are negative we get α2.j2 > α1.j1, which shows that the value of
the children increases from left to right. In the other case, we have that α1 < α2 and
j1 = j2. Then it is obvious that α1.j1 < α2.j2 and therefore the claim is true.

Next we show that for any two neighboring nodes in the tree, the values in the
leaves of the subtree rooted at the left node is less than the values in the leaves of the
subtree rooted at the right node. Let V(f,A) denote the set of values in the leaves of
the subtree rooted at (f,A).

Lemma 6.10. Let (f,A) and (f ′, A′) be neighboring nodes of the same parent such
that (f,A) is to the left of (f ′, A′). Then u < v for every u ∈ V(f,A) and v ∈ V(f ′,A′).

Proof. Let f =
∑l−1
i=1 αixi + αlxl + t and f ′ =

∑l−1
i=1 αixi + α′lxl + t. We show

that the rightmost element, u in V(f,A) is less than the left most element, v in V(f ′,A′).
From Lemma and applying induction on the depth of the tree, one can show that
u ≤ f(A) + (s − l) ∆

Rn and v ≥ f ′(A′) − (s − l) ∆
Rn
′. Here n, n′ are the minimum

assignments in A and A′ respectively. Let us assume that both coefficients α′l, αl > 0.
A similar analysis can be given for other combinations of α′l and αl. Now since (f,A)

is the left neighbor of (f ′, A′) we have n < n′. Then v − u ≥ α′ln
′ − (s − l)∆n′

R −
αln− (s− l)∆n′

R ≥ n′ − 3s∆n′

R > 0. The claim follows, since R = 4s∆. The next
lemma says that the values of the leaves of the tree increases as we traverse from left
to right.

Lemma 6.11. Let (f,A) and (f ′, A′) be two distinct nodes such that f(A) <
f ′(A′). Then (f,A) appear to the left of (f ′, A′).

Proof. This follows from Lemma.

Lemma shows that if we travel the tree from left to right, then we get the
elements in Bt in an ascending order. The following lemma now shows how to build
a formula, which can use the sorting tree to traverse through the elements in Bt.

Lemma 6.12 (Tree Lemma). Let nnp(w) ⊆ Rφ. Fix t ∈ T . Assume that for

every b ∈ Bt we have an element gb ∈ G. For all f ∈ Ft, m ∈ G, ~d ∈ nnp(w)t, ~a,

let γmf be active domain formulas such that w, ~d,~a |= γmf (~x, ~y) iff gf(~d,~a) = m. Then

there are active domain formulas Γm
′

such that w,~a |= Γm
′
(~y) iff

∏
b∈Bt gb = m′.

Proof. We will use the sorting tree, Tt corresponding to Bt for the construction
of our formula. Recall that the nodes are labeled by tuples (f,A), where f is a
function and A is the assignment of the parameters of f . Let V(f,A) ⊆ Bt be the
set of values at the leaves of the subtree rooted at the node labeled by (f,A), and

g(f,A) =
∏
b∈V(f,A)

gb. We will do induction on the depth D of the tree. Let τm,Df (~x)

be a formula such that w, ~d |= τm,Df (~x) iff
∏
b∈V

(f,~d)
gb = m where (f, ~d) is the

label of a node that has a subtree of depth at most D. Hence we multiply all group
elements gb for which b is in V(f,~d).

26 Andreas Krebs and A V Sreejith

Base Case (leaves): We define τm,0f (~x) = γmf (~x).
Induction Step: Let us assume that the claim is true for all nodes with a subtree

of depth at most D. Let the node labeled by (f,A) have a subtree of depth D+1. We

will need to specify the formula τm,D+1
f (~x), where ~x agrees with the assignment A.

For every child (f ′, A′) of (f,A) the depth of the corresponding subtree is less than
or equal to D. Hence we know we have already formulas by induction.

Recall what the children of (f,A) are: They are of form (f ′α, A
′
j) and (f ′′, Aj).

Moreover all nodes (f ′α, A
′
j), where α is negative, come to the left of (f ′′, Aj) and all

nodes (f ′α, A
′
j), where α is positive, come to its right.

We start by grouping some of the children and computing their product. We let
T−(A′j) be the product of all subtrees labeled by (f ′α, A

′
j) for α = −∆,−∆+1, . . . ,−1.

This is a finite product so we can compute this by a Boolean combination of the
formulas τm,Df ′α

(~x, xl+1).

π−,m,Df (~x, xl+1) ::=
∨

m−∆...m−1=m

(−1∧
α=−∆

τmα,Df ′α
(~x, xl+1)

)

Now we want to compute the product
(∏

j∈nnp(w)(T
−(A′j))

−1
)−1

which is the product

of the T−(A′j) where j ∈ nnp(w) is decreasing. But this can be computed using an

active domain group quantifier, τ−,m,Df (~x) as follows:

τ−,m,Df (~x) = Qm
−1

G xl+1

(
¬λ(xl+1) ∧ (xl > xl+1)

)

〈π−,m
−1
1 ,D

f (~x, xl+1), . . . , π
−,m−1

K ,D

f (~x, xl+1)〉

Recall that the elements of group G are ordered m1, . . . ,mK . For the single node
(f ′′, A) we already have the formulas τm,Df ′′ (~x) by induction (here we have ~x since the
assignment A is the same for (f,A) and (f ′′, A)).

Similarly we define formulas π+,m,D
f (~x, xl+1) for the positive coefficients, and

compute their product
∏
j∈nnp(w) T

+(A′j) in an increasing order.

π+,m,D
f (~x, xl+1) ::=

∨
m1...m∆=m

(∆∧
α=1

τmα,Df ′α
(~x, xl+1)

)

τ+,m,D
f (~x) ::= QmGxl+1

(
¬λ(xl+1) ∧ (xl > xl+1)

)
〈π+,m1,D
f (~x, xl+1), . . . , π+,mK ,D

f (~x, xl+1)〉

We have now computed the product of the group elements for the three differ-
ent groups of children. So by a Boolean combination over these formulas we get
τm,D+1
f (~x): ∨

m′m′′m′′′=m

(
τ−,m

′,D
f (~x) ∧ τm

′′,D
f ′′ (~x) ∧ τ+,m′′′,D

f (~x)
)

Non-definability of languages by generalized first-order formulas 27

So finally we get Γm
′

which is same as the formula τm
′,s+2

(0,{}) , which is valid at the root

of the tree.
We can also relativize the formulas Γm

′
, with respect to any position.

Lemma 6.13. Let the hypothesis of Lemma hold. Then for all m ∈ G, there
are active domain formulas Γm(z, ~y) such that

w, d,~a |= Γm(z, ~y) iff
∏
b∈Bt
b≥d

gb = m

Similarly, for all m ∈ G, there are active domain formuals Γm(z, ~y) such that

w, d,~a |= Γm(z, ~y) iff
∏
b∈Bt
b>d

gb = m

Proof. We will show how to do the first part of the Lemma. We can conjunct all
formulas γmf , for m 6= 1G, with the condition z ≥ f(~x, ~y). Whereas the formula γ1

f ,
can be disjuncted with the formula z ≥ f(~x, ~y). Now applying the tree Lemma
will give us the formula we were looking for.

6.4. Constructing the active domain formula. This subsection uses all the
previous subsections to build the active domain formula we are looking for.

First for all m ∈ G, f ∈ F , we give formulas γmf such that it is true when N0

evaluates to m.
Lemma 6.14. For all m ∈ G, f ∈ F , there are formulas γmf such that for all

d1, . . . , ds ∈ nnp(w), we have that

w, ~d,~a |= γmf (~x, ~y)⇔ N0(f(~d,~a)) = m

Proof. For an i ≤ K, we denote by φ̃mi(z, ~y) the formula
∧
j<i ¬φj(z, ~y)∧φi(z, ~y).

For a l ∈ N, the following formula checks if there is a point b′ in B such that b+ l = b′.
Since in each B there is at most one such element, we can use the group quantifier to
simulate the existential quantifier.

δlf (~x, ~y) ::=
∨

f ′∈F\f

Qm1

G ~x′〈f ′(~x′, ~y) = f(~x, ~y) + l, false, . . . , false〉

So we have that IR(b) = l iff δl+1
f ∧

∧
l′<l ¬δlf is true. We define πm,+lf to be true if

the product of the first l group elements to the right is m.

πm,+lf (~x, ~y) ::=
∨

g0...gl=m

(l∧
i=0

φ̃gi(f(~x, ~y) + i, ~y)

)
We now give a formula ψPostf,m (~x, ~y) such that Post(f(~d,~a)) = m iff w |= ψPostf,m (~d,~a).
Now we have two cases to consider.
Case IR(b) < W : For each of the case b < b′ such that l = b′ − b < W , the formula

πm,lf compute the product of the group elements. We define ψmf to be true if the
interval is less than W and the product of the group elements is equal to m.

ψmf (~x, ~y) ::=

W−1∧
l=1

((
δlf (~x, ~y) ∧

l−1∧
l′=1

¬δl
′

f (~x, ~y)
)
→ πm,+lf (~x, ~y)

)

28 Andreas Krebs and A V Sreejith

Case IR(b) ≥ W : When b′ − b ≥ W we have to compute the product for the first

r group elements, where b + r ≡W 0 and r ≤ W . Therefore we define ψ̂mf which
computes the product of the group elements equal to m in this case.

ψ̂mf (~x, ~y) ::=

W∧
l=1

(
f(~x, ~y) + r ≡W 0

)
→ πm,+rf (~x, ~y)

A Boolean combination over δlf , ψ̂mf and ψmf can give us the formula ψPostf,m .

ψPostf,m (~x, ~y) ::=

((
W−1∧
l=1

¬δlf

)
=⇒ ψ̂mf

)
∨ ψmf

Similarly we give formulas ψPref,m for all m ∈ G and f ∈ F , such that Pre(f(~d,~a)) = m

iff w |= ψPref,m(~d,~a).
For all m ∈ G and f ∈ F , the formulas, γmf (~x, ~y) are as follows:

γmf (~x, ~y) ::=
∨

g1g2g3=m

ψPref,g1
∧ φ̃g2

∧ ψPostf,g3

We know that for every b ∈ B there is a function f ∈ F , d1, . . . , ds′ ∈ nnp(w),

such that b = f(~d,~a), where ~a is the fixed assignment to the variables ~y. We will use
this encoding of a position and define a formula νmk,f such that

w, ~d,~a |= νmk,f (~x, ~y)⇔ Nk(f(~d,~a)) = m

Similarly we define formulas ν̂mk,f such that w, ~d,~a |= ν̂mk,f (~x, ~y) iff N̂k(f(~d,~a)) = m.
We show this by induction over k ≤ |T |. Starting with the base case k = 1.

Lemma 6.15. Let d1, . . . , ds′ ∈ nnp(w). For each m ∈ G, there is an active

domain formula νm1,f (~x, ~y) in L[<,+], such that if w |= νm1,f (~d,~a) then N1(f(~d,~a)) =
m.
Similarly there is an active domain formula ν̂m1,f (~x, ~y) in L[<,+] such that if w, ~d |=
ν̂m1,f (~x,~a) then N̂1(f(~d,~a)) = m.

Proof. Consider the set Bt1 of boundary points formed using functions Ft1 . Look
at all the formulas γmf , where f ∈ Ft1 , given by Lemma. Now we are in a position
to apply Lemma, which gives us the required formulas.

The induction step follows.
Lemma 6.16. Let d1, . . . , ds′ ∈ nnp(w). For each m ∈ G, there is an active

domain formula νmk,f in L[<,+], such that w, ~d,~a |= νmk,f (~x, ~y) then Nk(f(~d,~a)) = m.

Similarly there is an active domain formula ν̂mk,f (~x, ~y) in L[<,+], such that w, ~d,~a |=
ν̂mk,f (~x, ~y) then N̂k(f(~d,~a)) = m.

Proof. For all m ∈ G and f ′ ∈ Ftk we give formulas γmf ′ such that the following
holds:

w, ~d′,~a |= γmf ′ (~x, ~y)⇔
(
N̂k−1(b′)

)−1

N0(b′)N̂k−1(b′) = m

Here d′1, . . . , d
′
s ∈ nnp(w) and f ′(~d′,~a) = b′. By induction hypothesis there exists

formulas νmk−1,f ′ and ν̂mk−1,f ′ which corresponds to Nk−1(f ′(~x, ~y)) and N̂k−1(f ′(~x, ~y))

Non-definability of languages by generalized first-order formulas 29

respectively. Taking a Boolean combination over these formulas we get the required
formula γmf ′ . We now apply our Tree Lemma which gives us formulas Γ m, for all
m ∈ G, such that

w, ~d,~a |= Γm(f(~x, ~y), ~y)⇔ w |=
∏

b′∈Btk
b′>b

(
N̂k−1(b′)

)−1

u(b′)Nk−1(b′) = m

Taking Boolean combination over Γm and νmk−1,f will give us the formula νmk,f . Simi-
larly we can build active domain formulas ν̂mk,f (~x, ~y), for all m ∈ G.

The formulas we were looking for are the active domain formulas νm|T |,f , where f
is the function which outputs the constant 1. The following Lemma now follows.

Lemma 6.17. Let nnp(w) ⊆ Rφ. Then∏
b∈B

N0(b) = m⇔ w,~a |= νm|T |,1(~y)

Proof. From Lemma it follows that w,~a |= νm|T |,1 ⇔ Nk(1) = m. The claim
now follows from Lemma.

Now we are in a position to finish the proof of our main Lemma.
Proof. [Proof of Lemma] By Lemma we know that it suffices to compute the

product of N0(b), provided the infinite interval evaluate to identity. From Lemma
we know that there are active domain formulas νm|T |,1 ∈ L[<,+] such that N|T |(1) = m

iff w,~a |= νm|T |,1, provided the active domain of the word w comes from the set Rφ.
We need to do one last thing. Check that the infinite interval evaluates to 1G.

Replace all formulas z > ρ, z < ρ, c(z) for a c 6= λ and λ(z) by true, false, false, true

respectively in the formulas φ̂i and call these formulas ψ̂i. There exists a witness in
the infinite interval for the formula φ̂i iff ψ̂i evaluates to true. By Theorem there
should not be any witness in the infinite interval. Therefore the formula ψ̂ =

∨
i ψi

evaluates to true iff the infinite interval does not evaluate to 1G.
Combining both the formulas, we get that φ′(~y) = ¬ψ̂(~y)∧νm|T |,1(~y) and therefore

for all w, such that nnp(w) ⊆ Rφ and for all ~a ∈ Nr we have that

w |= φ(~a)⇔ w |= φ′(~a)

This completes the proof.

7. Conclusion. We have shown that in the presence of a neutral letter the
addition relation collapse to linear ordering no matter what monoid quantifier is been
used. All languages definable using monoid quantifiers and an order predicate, on
the other hand, are regular []. Now using semigroup theoretic methods we can
separate these classes []. This enabled us to show separation between various
logics which uses addition and order predicates.

Unfortunately if both addition and multiplication are present, then the collapse
does not happen. It is also interesting to note that non-solvable groups do not show
any surprising property if only addition is present, but as we know from Barring-
ton’s theorem non-solvable groups behave quite differently when both addition and
multiplication are present.

Figure compare the expressiveness of different logics in the presence of addition.
The ultimate objective is to show non-expressibility results for arbitrary predi-

cates or at least when both addition and multiplication are present. One possible

30 Andreas Krebs and A V Sreejith

fogrp[<,+]

FOMOD[<
,+]

FO[<,+]

mod[<,+] C6[<,+] C2[<,+]

grp[<,+] S10[<,+] S5[<,+]

Fig. 7. Relation between logics with regular quantifiers and addition relation. The arrows show
strict inclusion. No arrow show that the classes are incomparable. C6 and C2 denote cyclic groups
with 6 and 2 elements respectively and S10 and S5 denote symmetric groups with 10 and 5 elements
respectively. The diagram would be similar if the only predicate was <. On the other hand, if
multiplication is present, the logics behave differently and many questions remain open.

direction to take this work forward will be to identify the kinds of predicates where
our techniques could be applied.

Another way to look at separating the “natural uniform” versions of the com-
plexity classes will be to ask whether one can come up with other suitable restrictions
on the set of languages. We saw how restricting the language class to neutral letter
languages, help us come up with lower bound results. Can one come up with better
restrictions on the set of languages? Inside this restricted set of languages can one
show addition and multiplication collapse to order relation? This seems to be the idea
Straubing considers in []. Straubing [] proposes word problems over Reg-
ular language as a suitable restriction, while McKenzie, Thomas, Vollmer []
consider context free languages as a restriction.

Another interesting question which our result fails to answer is whether word
problems over non-solvable groups can be defined in MAJ[<,+] []? Can our
techniques be of use when working with infinite groups?

REFERENCES

[ABO84] Miklos Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth Compu-
tations. In ACM, editor, Proceedings of the sixteenth annual ACM Symposium on
Theory of Computing, Washington, DC, April 30–May 2, 1984, pages 471–474,
pub-ACM:adr, 1984. ACM Press.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, February 1989.

[BIL+05] David A. Mix Barrington, Neil Immerman, Clemens Lautemann, Nicole Schweikardt,
and Denis Thérien. First-order expressibility of languages with neutral letters or:
The Crane Beach conjecture. J. Comput. Syst. Sci., 70(2):101–127, 2005.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. Journal of Computer and System Sciences, 41(3):274–306, December
1990.

[BL00a] Michael Benedikt and Leonid Libkin. Expressive power: The finite case. In Constraint
Databases, pages 55–87, 2000.

[BL00b] Michael Benedikt and Leonid Libkin. Relational queries over interpreted structures. J.
ACM, 47(4):644–680, 2000.

Non-definability of languages by generalized first-order formulas 31

[BL06] Christoph Behle and Klaus-Jörn Lange. FO[<]-uniformity. In IEEE Conference on
Computational Complexity, pages 183–189, 2006.

[BS91] David A. Mix Barrington and Howard Straubing. Superlinear lower bounds for
bounded-width branching programs. In Structure in Complexity Theory Confer-
ence, pages 305–313, 1991.

[CKK+07] Arkadev Chattopadhyay, Andreas Krebs, Michal Koucký, Mario Szegedy, Pascal Tes-
son, and Denis Thérien. Languages with bounded multiparty communication com-
plexity. In STACS, pages 500–511, 2007.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[Imm87a] Neil Immerman. Expressibility as a complexity measure: Results and directions. In
Stephen R. Mahaney, editor, Proceedings of the 2nd Annual Conference on Struc-
ture in Complexity Theory, CSCT’87 (Cornell University, Ithaca, NY, June 16-19,
1987), pages 194–202, Washington, D.C., 1987. IEEE Computer Society, Computer
Society Press of the IEEE.

[Imm87b] Neil Immerman. Languages that capture complexity classes. SIAM Journal on Com-
puting, 16(4):760–778, August 1987.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,
1999.

[Juk12] Stasys Jukna. Boolean Function Complexity, volume 27 of Algorithms and Combina-
torics. Springer-Verlag, New York, 2012.

[KLR07] Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Characterizing TC0

in terms of infinite groups. Theory Comput. Syst., 40(4):303–325, 2007.
[KPT05] Michal Koucký, Pavel Pudlák, and Denis Thérien. Bounded-depth circuits: separating

wires from gates. In STOC, pages 257–265, 2005.
[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin, 2004.
[Lin66] Per Lindström. First order predicate logic with generalized quantifiers. Theoria, 32:186–

195, 1966.
[LTT06] Clemens Lautemann, Pascal Tesson, and Denis Thérien. An algebraic point of view on

the crane beach property. In CSL, pages 426–440, 2006.
[MTV10] Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity for

boolean circuits. SIAM Journal on Computing, 39(7):3186–3206, 2010.
[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes
Rendus, I. Congrès de Mathématiciens des pays slaves, Warsaw, pages 192–201,
1929.

[Raz89] A. A. Razborov. On the method of approximations. In ACM, editor, Proceedings
of the twenty-first annual ACM Symposium on Theory of Computing, Seattle,
Washington, May 15–17, 1989, pages 167–176, pub-ACM:adr, 1989. ACM Press.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, August 1997.

[RS07] Amitabha Roy and Howard Straubing. Definability of languages by generalized first-
order formulas over (N,+). SIAM J. Comput, 37(2):502–521, 2007.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In ACM, editor, Proceedings of the nineteenth annual ACM Sympo-
sium on Theory of Computing, New York City, May 25–27, 1987, pages 77–82,
pub-ACM:adr, 1987. ACM Press.

[Str94] Howard Straubing. Finite automata, formal logic, and circuit complexity. Birkhauser
Verlag, Basel, Switzerland, 1994.

[Str05] Howard Straubing. Inexpressibility results for regular languages in nonregular settings.
In Developments in Language Theory, pages 69–77, 2005.

[STT95] Howard Straubing, Denis Thérien, and Wolfgang Thomas. Regular languages defined
with generalized quanifiers. Inf. Comput, 118(2):289–301, May 1995.

[Vol99] Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag, Berlin-
Heidelberg-New York-Barcelona-Hong Kong-London-Milan-Paris-Singapur-Tokyo,
1999.

