
REGULAR QUANTIFIERS IN LOGICS

by

Sreejith A V

The Institute of Mathematical Sciences
Chennai 600113

A thesis submitted to the
Board of Studies in Mathematical Sciences

In partial fulfilment of requirements
For the Degree of

DOCTOR OF PHILOSOPHY
of

HOMI BHABHA NATIONAL INSTITUTE

December 19, 2013

Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared by
Sreejith A V titled “Regular quantifiers in logics” may be accepted as fulfilling the dis-
sertation requirement for the Degree of Doctor of Philosophy.

Date :
Chairman and Convener: Kamal Lodaya

Date :
Member: Antoine Meyer

Date :
Member: Meena Mahajan

Date :
Member: R Ramanujam

Final approval and acceptance of this dissertation is contingent upon the candidate’s sub-
mission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and recom-
mend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide: Kamal Lodaya

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fullfillment of requirements for an advanced
degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be
made available to borrowers under rules of HBNI.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgement of source is made. Request for permission for extended
quotation from or reproduction of this manuscript in whole or in part may be granted by
the Competent Authority of HBNI when in his or her judgment the proposed use of the
material is in the interests of scholarship. In all other instances, however, permission must
be obtained from the author.

Sreejith A V

DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by
me. The work is original and has not been submitted earlier as a whole or in part for a
degree/diploma at this or any other Institute/University.

Sreejith A V

Abstract

First order logic on words is a well-studied logic [Tho97, EFT94]. It is known that first
order logic (FO) with a linear order, FO[<] (in our notation, we enclose the relations used
in square bracket) cannot count more than a constant [Lib04]. From the result of Furst,
Saxe and Sipser [FSS84] we know that, the logic FO[<, Arb] cannot define the language

Leven = {w ∈ {0, 1}∗ | number of 1 s is even in w}

Here Arb stands for arbitrary numerical predicates (predicates whose truth depends only
on the position of the variables in the linear order and not on the letters at these positions).
This shows that first order logic cannot count modulo a number (two in the language Leven).
This inability to count, led to extending first order logic by different kinds of quantifiers
[STT95, Imm86, Ruh99b].

In this thesis, we study logic on words extended with regular quantifiers. Modulo count-
ing quantifiers are one particular example of such quantifiers, which have been well stud-
ied in the past [STT95, Pot94, RS07]. These quantifiers can be generalized to group
quantifiers and further to monoid quantifiers [BIS90, Str94], all being regular quantifiers.

The logics we extend can be classified into two parts. In the first part, we look at logics
which define regular languages like FO[<] and linear temporal logic (LTL). We extend
these logics with the above mentioned regular quantifiers. In the second part, we look at
regular quantifiers over a linear order and an addition function which respects the linear
order. This takes us outside regular languages. We ask the following questions about the
logics we consider.

• Expressiveness: We investigate the languages definable in these logics.

• Satisfiability and model checking: The complexity of satisfiability and model check-
ing for these logics are studied.

The title of the thesis comes from the observation that the quantifiers we consider, in the
presence of a linear order, can only define regular languages [Str94]. There are quanti-
fiers like the unary counting quantifiers [GOR97, Sch05] which can define non-regular
languages.

In the first part of our work, we show that LTL extended with modulo counting/ group op-
erators (LTLgrp) and FO[<] extended with modulo counting/group quantifiers (FOgrp[<]),
both accept the same set of languages. We then go on to show that the satisfiability and
model checking for LTLgrp is Pspace-complete. We also look at satisfiability of various
fragments of this logic. Then we show that the two variable fragment of FOgrp[<] is
Expspace-complete. We also analyse certain important sublogics.

In the second part of our work, we study first order logic with a linear order and the
arithmetic predicate, +. We first show that the two variable fragment of FOmod[<,+] is
undecidable. Then we show that over a unary alphabet satisfiability of FOmod[<,+] is
2Expspace. Finally we investigate the expressive power ofM[<,+], whereM is a set of
monoid quantifiers. We show, using the concept of a neutral letter [BIL+05], that the class
of neutral letter languages definable inM[<,+] is equivalent to those definable inM[<].
Using the above claim, we are able to show that the logics M1[<,+] is different from
M2[<,+], if the set of monoid quantifiersM1 andM2 are different. This lets us answer a
conjecture of Roy and Straubing [RS07] that FO[<,+] and mod[<,+] are incomparable.
We also show that given a regular language L, it is decidable whether L is definable in
mod[<,+] or not.

Acknowledgements

I would like to express my sincere gratitude to my advisor Professor Kamal Lodaya for
the continuous support of my research, for his motivation, patience, enthusiasm and im-
mense knowledge. His guidance helped me to proceed through the doctoral program and
complete my thesis. He gave me the freedom to say no and I specially thank him for that.

Besides my advisor, I would like to thank the other faculty members Prof. Ramanujam,
Prof. Meena and Prof. Arvind, for their encouragement, support and helpful suggestions.

I thank the Institute of Mathematical Sciences (IMSc), for providing me with financial
assistance during my research career. It has given me a truly wonderful atmosphere and
facilities for pursuing my research. I thank all the faculty members, the office staff, library
staff and the students for their cooperation during my stay at IMSc.

I would also like to thank University of Tübingen for giving me an opportunity to visit
them and also for the financial support. Special thanks to Andreas, Klaus-Jörn and Renate.

I would like to thank the anonymous referees for pointing out improvements/mistakes in
the thesis.

I am especially grateful to Ramchandra and Baskar. They were of immense support not
only academically but also for all the extra curricular fun we had. Baskar requires spe-
cial mention for giving me company whenever I went out for food. A special thanks to
Mubeena, my officemate for all the help and advice. Whenever I wanted to watch a movie,
she would get it for me.

I had lots of interesting political/philosophical discussions with Sudhir and Neeraj. The
never ending “stupid” talks we had were always entertaining. Learning the basics of Ten-
nis with them was also fun. I would also like to thank Yadu, Karteek, Baskar, Ramchandra
with whom I had lots of TT and badminton sessions.

Special thanks to Philip, Manju, Anoop, Narayanan, Madhushree, Prajakta, Rohan, Srikanth,
Nutan, Raja, Kunal for making my stay in IMSc fun filled. Outside IMSc, Yousuf, Ajesh,
Karthik, Mathew and Deepu were a joy to hang out with.

Last but not the least I would like to thank my parents Ajithkumar and Vijayalekshmi,
sister Sreeja and my grandparents for supporting me in this long journey. The thesis is as
much a product of their effort as mine.

Publications

Kamal Lodaya and A.V. Sreejith. LTL can be more succinct. In Proc. 8th ATVA, Singa-
pore, volume 6252 of LNCS, pages 245–258, 2010.

A. V. Sreejith. Expressive completeness for ltl with modulo counting and group quanti-
fiers. Electronic Notes in Theoretical Computer Science, 278:201–214, 2011.

Andreas Krebs and A. V. Sreejith. Non-definability of languages by generalized first-
order formulas over (N, +). In LICS, pages 451–460, 2012.

C O N T E N T S

Abstract i

Acknowledgements i

Publications i

Contents i

List of Figures v

List of Tables vi

i introduction 1

1 overview 2

1.1 Results . 4

1.1.1 Formal Languages . 4

1.1.2 Presburger arithmetic . 5

1.1.3 Verification . 5

1.1.4 Circuit Complexity . 6

1.2 Organization of the thesis . 7

2 preliminaries 8

2.1 Basic Definitions . 8

2.2 Complexity classes . 9

2.3 Semigroups . 10

2.4 Linear temporal logic . 12

2.4.1 Modulo counting operators . 12

2.4.2 Group operators . 14

2.4.3 Extended Temporal Logics . 16

2.4.4 Other definitions . 18

2.5 First order logic . 19

i

2.5.1 Counting quantifiers . 20

2.5.2 Monoid/Group quantifiers . 21

2.5.3 Extended first order logic . 22

2.5.4 Few examples . 23

ii regular languages 24

3 survey on regular languages 25

3.1 Expressiveness . 25

3.1.1 Group quantifier Extensions . 26

3.1.2 A sublogic . 27

3.2 Satisfiability and model checking . 29

4 ltlgrp expressiveness (equivalence with fogrp[<]) 31

4.1 Introduction . 31

4.2 Properties of LTLgrp . 31

4.2.1 Separation property of LTLgrp 32

4.2.2 Expressive Completeness of LTLgrp 37

4.3 UTL and two variable fragment of FO[<] 39

4.4 Discussion . 41

5 ltlgrp satisfiability 43

5.1 Introduction . 43

5.2 Modulo counting . 44

5.2.1 A Pspace upper bound . 44

5.2.2 Corresponding lower bound . 45

5.3 Length modulo counting . 47

5.3.1 Length modulo counting - Upper bound 48

5.3.2 Length modulo counting - Lower bound 51

5.4 Satisfiability of tl[dur] logic . 53

5.5 Discussion . 55

6 fo[<] satisfiability 57

6.1 Introduction . 57

6.2 Upper bounds via linear temporal logic 57

6.3 Lower bounds via tiling problems . 61

6.3.1 Tiling problems . 61

6.3.2 Modulo counting is Expspace-hard 62

6.3.3 Modulo predicates is Nexptime-hard 65

6.4 Discussion . 65

iii logics with addition 67

7 survey on addition relation 68

7.1 Expressiveness . 68

7.1.1 Descriptive Complexity of Circuit classes 69

7.1.2 The Crane Beach conjecture . 71

7.1.3 Presburger arithmetic extended with modulo counting 73

7.2 Satisfiability . 74

8 fogrp[<,+] expressiveness (lower bounds results) 76

8.1 Introduction . 76

8.2 Results . 76

8.2.1 Non definability Results . 76

8.2.2 Decidability of Regular languages in LS[<,+] 78

8.3 Proof Strategy . 80

8.4 Proof of the Main Theorem . 82

8.4.1 Definitions . 82

8.4.2 The Proof . 83

8.5 Proof of Lemma 8.4.6 . 87

8.5.1 Intervals and Linear Functions 87

8.5.2 Treating each Bt differently . 93

8.5.3 Sorting Tree . 96

8.5.4 Constructing the active domain formula 102

8.6 Discussion . 105

9 fogrp[<,+] satisfiability 107

9.1 Introduction . 107

9.2 Two variable logic with addition . 107

9.3 Presburger arithmetic with mod quantifiers 110

9.4 Discussion . 115

iv conclusion 116

10 future directions and open questions 117

Bibliography 118

Index 127

L I S T O F F I G U R E S

Figure 1 Automaton for S 5 . 17

Figure 2 Star free Languages - Different characterizations 25

Figure 3 Logics with group quantifiers 27

Figure 4 Unambgious Languages - Different characterizations 28

Figure 5 Past Group modality . 32

Figure 6 Timeline for aS̆b∧ β . 33

Figure 7 Timeline for GP
g′〈...〉 . 34

Figure 8 Regular quantifiers and Logics 41

Figure 9 Proof of removing addition . 81

Figure 10 Boundary points and intervals 89

Figure 11 Positions of interest in a word 91

Figure 12 Boundary points and group values 93

Figure 13 Active Domain . 97

Figure 14 Sorting tree . 99

Figure 15 Regular quantifiers and addition: Expressiveness 105

v

L I S T O F TA B L E S

Table 1 Satisfiability of FO[<] . 30

Table 2 LTLgrp to FOgrp[<] . 39

Table 3 Expressive power of various fragments of LTLgrp 42

Table 4 LTL and extensions: Satisfiability 43

Table 5 Two variable logic: Satisfiability 66

Table 6 Generalized quantifiers and Expressiveness 70

vi

Part I

I N T RO D U C T I O N

1

OV E RV I E W

In the thesis, the author views Logic as a formal system which consists of a finite set of
“base properties” (called propositional symbols or just propositions) along with certain
simple rules to construct more and more complicated properties. In particular, we will
be looking at properties on words. For example, the “set of all words of even length
formed from the letters {a, b}”, is a property on words. The logic we consider will be
first order logic on word structures. The structure will have built-in predicates like linear
order <, successor (suc) relation, and also the arithmetic predicate +. These logics have
been well studied in the past. For example, the logic FO[<] (first order logic with a linear
order relation, we use the conventional notation of putting the relations in square brackets)
has other equivalent characterizations. The set of star free languages [SM73], the set of
languages recognized by aperiodic monoids [Sch65], the set of languages definable by
linear temporal logic [Kam68] all exactly characterize the set of languages definable by
FO[<].

Limitations of first order logic

The major limitation of first order logic is its inability to count more than a constant. It is
a well known fact that the logic FO[<] cannot count more than a constant [Lib04]. One
might wonder, whether adding new relations could help in counting. Extra relations can
help, but not much. The logic FO[<,+, ∗] can count upto a polynomial in the logarithm
of the input size [ABO84, FKPS85, RW91]. On the other hand, from the result of Furst,
Saxe and Sipser [FSS84] we know that even the logic FO[<, Arb] (here Arb stands for
arbitrary predicates) cannot count upto any polynomial in input size. For example, the
following language is not expressible in FO[<, Arb]

{w ∈ {a, b}∗ | number of a in w > number of b in w}

The above language requires the logic to count the number of occurrences of a (this count
can go upto n

2 , where n is the size of the word) and then verify whether it is greater than
half the size of the input. The counting required can be shown to be greater than any
polynomial in the logarithm of n. Let us look at yet another example. Here we require
a different kind of counting. Furst, Saxe and Sipser [FSS84] showed that the following
language is also not definable in FO[<, Arb].

La = {w ∈ {a, b}∗ | there are an even number of occurrences of letter a in w}

2

The above language is regular (a DFA of size 2 can recognize this language). The inex-
pressibility of La shows the inability of FO[<, Arb] to count (modulo 2).

Extensions

We observed the severe limitations of first order logic in expressing some simple proper-
ties. We also saw that, adding extra relations cannot help much. This has led to attempts
at incorporating additional quantifiers into these logics, which hopefully can increase the
expressive power. Below we give a few attempts which have been made so far.

• Straubing, Thérien and Thomas [STT95], looked at first order logic over arbitrary
relations extended with modulo counting quantifiers. The quantifiers can count the
number of positions (modulo some number) a particular formula is satisfied in a
word.

• Barrington, Immerman and Straubing [BIS90] looked at logics with group quanti-
fiers, which generalized modulo counting to operations in a finite group. They show
that these logics are closely related to well known circuit complexity classes.

• Baziramwabo et al [BMT99], extended linear temporal logic with group quantifiers
and looked at algebraically characterizing these classes.

• Ruhl [Ruh99b], showed that over an ordered finite structure, first order logic with
unary counting quantifiers (here the quantifiers can count the number of positions a
particular formula is satisfied and compare it with a variable) cannot express many
properties. For example, Ruhl proved that multiplication is not definable in FO[<
,+] even with counting quantifiers.

• Immerman [Imm86] and Vardi [Var82] extended first order logic with a least fixed
point, using it to characterize the class P over ordered structures.

Logics considered

In this thesis, we thoroughly investigate Modulo counting and Group quantifier extensions
of various logics. The logics we consider can be broadly classified into two parts.

Part 1: Inside Regular Languages

Here we look at first order logic with a linear ordering and linear temporal
logic. These logics can only express regular languages. We also look at
various fragments of these logics. In particular the two variable logics are
looked at.

Part 2: Logics with addition predicate

3

1.1. RESULTS

Here we look at first order logic with a linear order and an addition relation
faithful to the linear order. These logics can express non-regular languages.
For example, the language {anbn | n ∈N} is definable in this logic.

We then study the consequences of extending each of the above logics with modulo count-
ing and group quantifiers.

Questions asked

We ask the following two questions about the logics we consider.

The expressive power of the logics

We investigate the expressive power of the logics extended with the modulo
counting and group quantifiers.

Satisfiability of the logics

Here we investigate the complexity of satisfiability and model checking of the
extended logics. We try to pinpoint the exact complexity of these problems.

We will broadly refer to them as “expressiveness” and “algorithmic” questions respec-
tively.

1.1 results

Our results can be broadly classified under the following subdivisions.

1.1.1 Formal Languages

The satisfiability of first order logic (with < relation) and its various sublogics, especially
the two variable fragment of it, has been well studied in the past [SM73, Sto74, EVW02].
We look at first order logic extended with modulo counting quantifiers. Straubing and
Therien in [STT95] studied the expressiveness of this logic. The question of satisfiability
has been left unanswered.

In particular, we show that the satisfiability of FO2mod[<] is in Expspace. We also show
a sublogic to be Expspace-hard. On the other hand, we show that unary counting makes
it undecidable. We also identify a sublogic which is Nexptime-complete. Finally we look
at the logic with an addition relation. It is easy to show that FO[<,+] is undecidable. We
strengthen this to show that the satisfiability of FO2[<,+] is also undecidable.

4

1.1. RESULTS

1.1.2 Presburger arithmetic

By the results of Ginsburg and Spanier [GS66], Ruhl [Ruh99b], Schweikardt [Sch05] we
know that Presburger arithmetic is closed under unary counting quantifiers. Hence we
can observe that the logic is also closed under modulo counting quantifiers. Here we look
at the satisfiability of Presburger arithmetic extended with modulo counting quantifiers.
We show that a 2Expspace machine can check for truth of a given sentence.

1.1.3 Verification

Let us look at a slightly different logic, Linear temporal logic (LTL). It is known [Kam68]
that it is expressively equivalent to FO[<]. The advantage of LTL over FO[<] is that there
is an efficient reduction from LTL to automata. This permits faster algorithmic verification
of this logic. Hence LTL has found wide use as a specification language in industry.

Due to the fact that LTL and FO[<] are expressively equivalent, all the limitations we saw
for FO[<] also carry over to LTL. Hence linear temporal logic cannot define properties
which involve counting. Therefore, the language La is not definable in LTL. On the
other hand, these are some of the properties which comes often in verification but are not
definable in LTL. Let us look at an example where periodic notion of time is useful.

Example 1.1.1. Calendars:
They are defined [SN92] as a periodic set of consecutive intervals which partition time.
Such a periodic interval is called the granularity of the calendar. For example, “every
week”, “every month” etc are calendars.

This notion helps us to state properties like “every monday”, the formula φ holds, or
“every hour” the school bell should ring. These are properties which requires a periodic
notion of time. Many extensions to LTL have been proposed in literature to express such
properties [Dem06], [SN92]. Let us look at a concrete example.
We want to state that “every monday”at 7 : 00 am, the formula φ holds. Let us assume
that, each state represents an hour. Then we know that after every 24 states, it is next
day. Let us assume that “time” starts at Monday 0 : 00 am. Then we can state “every 24
hours”, the formula φ should hold, in our logic as follows:

G
(
modP

7,24true⇒ φ
)

The formula states that, whenever we see a state which is at a distance of 7(mod 24)
from the initial state, then that state should also satisfy the formula φ (Refer to Preliminar-
ies for the exact meaning of the notations).

In the above example we counted the number of states (modulo 24). Our logic, infact
can count more. It can count the number of states having a certain property. For example

5

1.1. RESULTS

we can state that after “every 5 occurrences of states which satisfy φ”, we should send a
“signal”. We can write this as follows.

G
(
modP

0,5φ⇒ S entS ignal
)

Our first result is a new proof of the expressive equivalence of LTL when extended with
modulo counting (and group operators) and FO[<] extended with the corresponding mod-
ulo counting quantifiers (and group quantifiers). It is also known that any regular language
can be expressed in first order logic with group quantifiers and vice versa. Thus we have
a temporal logic, LTL with group operators, LTLgrp which can express any regular lan-
guage. We then look at the algorithmic questions. We show that both the satisfiability
and model checking problems for LTLgrp are in Pspace. Thus we have a temporal logic
which can express any regular language and which has the nice properties required for
verification purposes. We also identify certain fragments of this logic which lie in com-
plexity classes below Pspace. For example, we identify that the satisfiability of the logic,
tl[F,len] (a sublogic of LTLgrp) is in ΣP

3 (a complexity class between Np and Pspace and
believed to be different from both). It is known that a fragment of LTL known as UTL is
equivalent to FO2[<]. We extend this and prove that UTL (the sublogic of LTL without
the until operator, See Chapter 2 Section 2.4) with modulo counting (and group operators)
is equivalent to FO2[<] with corresponding modulo counting (and group) quantifiers. We
also show that the satisfiability of UTL with modulo counting operator is Pspace-hard.

1.1.4 Circuit Complexity

It is known [Imm87b] that the set of languages accepted by dlogtime-uniform AC0 cir-
cuits is exactly those definable in FO[<,+, ∗] (here ∗ stands for multiplication). The logic
which uses only modulo counting quantifiers, MOD[<,+, ∗] on the other hand captures
exactly the circuit complexity class CC0. Similarly other finite monoid quantifiers capture
other circuit classes. One of the biggest open problems in circuit complexity is the separa-
tion of these circuit classes. For example, it is not known whether there exists a language
which is in AC0, but not in CC0. The above model-theoretic view of these circuit classes
helps us to look at these separation questions from the perspective of logic. The hope is to
bring lower bound techniques available in logic, like EF-games to prove non-definability
of some languages in the circuit classes. We give a more detailed introduction in Chapter
8.

As a first step in this direction, we ask the question of separating these logics when the
multiplication relation is not present. That is, can we separate M1[<,+] from M2[<,+],
where M1 and M2 are different sets of group quantifiers. We give a general technique to
prove lower bounds for logics of the form M1[<,+], which can then be used to separate
M1[<,+] from M2[<,+]. For example, we are able to show that MOD[<,+] is incom-
parable to FO[<,+]. To show lower bounds we look at “neutral letter languages”, which
are languages with a neutral letter, i.e a letter which can be removed or inserted into any
word without affecting its membership in the language.

6

1.2. ORGANIZATION OF THE THESIS

1.2 organization of the thesis

We organize the thesis as follows. Every chapter ends with a Discussion section, where we
give a summary of the results of the chapter and also look at open questions and directions
for future research. We divide the thesis into parts which address questions inside regular
languages and those outside.

The thesis is organized into four parts. Part i gives an introduction to the thesis. Chapter 1
looks at the questions we address and the motivation for these questions. This is followed
by Chapter 2 which gives the Preliminaries required for the rest of the book. We give a
basic introduction to certain logics and also introduces common notations used throughout
the thesis.

Part ii looks at logics which can define only regular languages. As we mentioned earlier,
here we look at first order logic with a linear ordering and linear temporal logic. We
begin this part by Chapter 3. The chapter gives a research survey of the area, relevant
to our work. Chapter 4 shows that LTL extended with group operators is equivalent
to FO[<], extended with group quantifiers. The chapter, also looks at the two variable
fragment of first order logic and the UTL logic. We also identify connections between
alternating finite automatas and modulo counting. Chapter 5 looks at the satisfiability of
linear temporal logic with group operators. It also considers various fragments of this
logic. Chapter 6 looks at the satisfiability of the two variable fragments of first order
logic and various counting quantifiers. We show that FO2[<] with modulo counting is
Expspace-complete, whereas FO2[<] with arbitrary counting is undecidable.

Part iii looks at first order logic with a linear order and addition relation. Again, we begin
by a Chapter 7 giving a survey of the relevant area. This is followed by Chapter 8 giving
a method to prove lower bound results for the logic M[<,+], where M is a set of monoid
quantifiers. This is then used to show that logics using different group quantifiers char-
acterize different class of languages. Chapter 9 looks at Presburger arithmetic extended
with modulo counting quantifiers. We show that satisfiability of this logic is 2Expspace.
In this chapter, we also show that satisfiability of FO2[<,+] is also undecidable.

In the final part iv we conclude the thesis. Chapter 10 gives the summary of the results of
the thesis. We also look at the questions left open in the thesis and also give suggestions
and directions for future work.

7

2

P R E L I M I NA R I E S

In this chapter we present the necessary definitions and notations used in this thesis. We
will introduce linear temporal logic and first order logic. Moreover, we point out the
important connections between these logics and semigroups.

2.1 basic definitions

We denote by Z the set of integers and N = {0, 1, 2, . . . } the set of natural numbers. The
notation [n] represents the set of numbers from 1 to n. For two numbers a, b ∈ Z, the
notation a|b denotes that a divides b and ≡n denotes the congruence relation modulo n.
That is a ≡n b iff n|a − b.

An alphabet Σ is a finite set of symbols. A symbol in an alphabet is also called a letter . A
word over Σ is a sequence of letters from Σ. The set of all finite words over Σ is denoted
by Σ∗ , the set of all right infinite words is denoted by Σω . Let Σ∞ = Σ∗ ∪ Σω . For a
word w ∈ Σ∞ the notation w(i) denotes the ith letter in w , i.e. w = w(1)w(2)w(2)
Note that a word starts from the 1st position. For a word w ∈ Σ∞, we denote by |w| the
length of the word (possibly infinite) and the number of occurences of the letter a in w
is denoted by |w|a . We denote by Σ∗ the set of all words over Σ and Σ+ the set of all
non-empty words. A language is any subset of Σ∗.

A regular expression over the alphabet Σ is a formula whose atomic expressions are the
symbols of the alphabet and empty word ε, and closed under alternation (denoted by +),
concatenation (.) and star operation (∗). That is

e ::= a ∈ Σ | λ | e1 + e2 | e1.e2 | e∗1

A star free expression is a regular expression whose atomic expressions are the symbols of
the alphabet, the empty set (denoted by ∅) and empty word ε, and closed under alternation
(denoted by +), concatenation (.) and negation (¬). That is

e ::= a ∈ Σ | ∅ | λ | e1 + e2 | e1.e2 | ¬ e1

Note that star free expressions can use negations (and hence intersection) and also the
empty language, but not the star operation. A regular language (star free language) is a

8

2.2. COMPLEXITY CLASSES

language definable by a regular expression (star free expression). The book [HU79] gives
an introduction to regular expressions and their connections to finite automata.

L ⊆ Σ∗ is an unambiguous language if and only if L is a finite union of unambiguous
concatenations K = A∗0a1A∗1a2...atA∗t , with ai ∈ Σ and Ai ⊆ Σ.

2.2 complexity classes

In this thesis, we identify the computational complexity of a variety of problems. We
assume the reader is familiar with complexity classes like P, Np, Pspace etc. A short
description of the not so famous classes used in the thesis follows. The class ΠP

2 is an Np
machine accessing an Np oracle and the class ΣP

3 is an Np machine which access a ΠP
2

oracle.

We also look at certain circuit classes. The circuit family class AC0 is defined as the
family of languages recognized by constant depth polynomial sized family of circuits hav-
ing unbounded fan-in AND, and OR gates. Similarly ACC0(p) is the family of languages
recognized by constant depth polynomial sized family of circuits containing unbounded
fan-in AND, OR and MODp for p > 0. Similarly CC0(p) corresponds to constant depth,
polynomial size circuits with only MODp gates. ACC0(CC0) is defined as the set of
languages recognized by an ACC0(p) (CC0(p)) family of circuits for some p > 0. The
circuit class TC0 corresponds to circuits with constant depth, polynomial size and having
in addition to AND and OR gates MAJ (majority) gate. On the other hand NC1 circuits
are defined polynomial sized, log depth circuits containing AND and OR gates but hav-
ing constant fan-in. There is an alternate characterization for NC1. It is the family of
languages recognized by constant depth, polynomial sized family of circuits which uses
AND, OR and finite group gates. The reader can refer to the books [Vol99], [Juk12]
[AB09] to know more about these classes.

Results by Razborov [Raz89] and Smolensky [Smo87] shows that:

Theorem 2.2.1. [Raz89, Smo87] If p is a prime number and q is a prime other than p
then the language Lq is not contained in ACC0(p).

Hence we can infer the following: AC0 is separated from ACC0(p) for a p > 0 [FSS84];
there are languages in CC0(p) which are not in AC0; the classes ACC0(p) and ACC0(q)
are different from each other if p and q are distinct primes. But relationships between
most other classes are open. For example, we do not know whether CC0 is different from
ACC0. In fact we do not know whether CC0(6) contains AC0 or whether CC0(6) is even
distinct from Np. These are among the biggest unsolved problems in circuit complexity.

We say that a family of circuits (C1, C2, . . .) is dlogtime-uniform if there is a deterministic
Turing machine running in logarithmic space which outputs the circuit Cn on an input
1n. That is the nth circuit in a dlogtime-uniform-AC0 circuit family can be outputted

9

2.3. SEMIGROUPS

by a deterministic log space machine which takes an n bit string of all 1s. Complexity
theoreticians consider this as a “natural” definition of uniformity.

A linear bounded automata (LBA in short) is a restricted Turing machine which can use
only space which is linear function of the input size. There is no such space restriction
for a general Turing machine. A deterministic LBA further restricts the LBA to have only
deterministic moves.

2.3 semigroups

A semigroup is a set closed under a binary associative operation (books [How95, Pin86]
study semigroups). If in addition it has an identity element , then it is called a monoid .
For a monoid M, we denote by 1M the identity element of M. All monoids we consider
except for Σ∗ will be finite. For a finite monoid, M and an arbitrary element m ∈ M it is
known that m|M| is 1M. That is m multiplied |M| times will give the identity element.

Proposition 2.3.1. Let M be a finite monoid and m ∈ M. Then m|M| = 1M.

A monoid M and a subset S such that S ⊆ M define a word problem. It is composed
of words w ∈ M∗, such that when the elements of w are multiplied in order we get an
element in S . That is, it is the language

{w ∈ M∗ |
|w|∏

i=1

w(i) ∈ S }

We denote by U1 the monoid consisting of elements {0, 1} under the operation 0.1 =
1.0 = 0.0 = 1 and 1.1 = 1. We say that a monoid M divides a monoid N if there exists
a submonoid N′ of N and a surjective morphism from N′ to M. A monoid M recognizes
a language L ⊆ Σ∗ if there exists a morphism h : Σ∗ → M and a subset T ⊆ M such
that L = h−1(T). It is known that finite monoids recognize exactly the set of regular
languages [Myh57]. We denote byM the set of all finite monoids. For a language L, the
syntactic monoid is the smallest monoid that recognizes L.

Example 2.3.2. Let L ⊆ {a, b}∗ be the set of all words containing an even number of a’s.
The two cycle group, G = {1, g} is the smallest monoid which recognize the language.
Consider the following morphism, h(a) = g and h(b) = 1. Then h−1(1) is exactly the
language L.

Here G is the syntactic monoid for L. Also the group G recognizes the language L.

It is known that the syntactic monoid of a regular language is unique.

We also use the block product of monoids, defined in [RT89]. The definition can also be
found in [Str94].

10

2.3. SEMIGROUPS

Definition 2.3.3. Let M and N be two finite monoids. Let F be the set of all functions from
N × N to M. Then the block product M�N is a monoid whose elements are MN×N × N
and whose operation is given as follows (we use multiplication as the symbol of operation
for readability):

(F, n)(F′, n′) = (G, nn′)

where F, F′, G ∈ F and for all (m, m′) ∈ N × N,

G(m, m′) = F(m, m′n′).F′(mn, n′)

For a set of monoids T , we denote by bpc(T) the set got by closing T under block product
operation.

A group is a monoid, with the additional property that every element has an inverse el-
ement . We denote by G ⊂ M the set of all finite groups. A symmetric group S n on a
finite set of n symbols is the group whose elements are all the permutation of n symbols
and the group operation being composition. A generating set of a group G is a subset of
the elements in G which when closed under the group operation gives G. All symmetric
groups has a generating set of cardinality two. A group with a generating set of cardinal-
ity one (generator) is called a cyclic group . We denote by mod ⊂ G the set of all finite
cyclic groups. All monoids in bpc(mod) are called solvable groups and all other groups
are called non-solvable groups . Solvable monoids are monoids which does not have any
non-solvable subgroup. Aperiodic monoids are those monoids in bpc(U1). The variety
DA [TT02] is an important class of monoids strictly contained inside aperiodic monoids.
They have nice algebraic characterizations. We give here an equivalent definition. DA
consists of the set of all languages recognizable by a partially ordered two way DFA (a
DFA is partially ordered then all its strongly connected components are trivial).

The following decomposition theorem helps one to understand monoids better [KR65] 1

Theorem 2.3.4. Krohn-Rhodes decomposition theorem [KR65]
Every finite monoid M divides a block product N1�(N2�(. . . (Nk−1�Nk) . . .)), where for
all i ≤ k, Ni is either U1 or a cyclic group or a non-solvable group.

Let us look at some regular languages.

Example 2.3.5. • Let L ⊆ {a, b}∗ be the set of all words of even length. The syntactic
monoid of this language is not aperiodic.

• Let L ⊆ {a, b}∗ be the set of all finite words where the number of occurrence of letter
a is 0 (mod 3). L is recognized by a cyclic group of length 3. That is

L = {w | |w|a ≡ 0 (mod 3)}

1 The original Krohn-Rhodes theorem was stated in terms of wreath products of semigroups. We state the
result in terms of block products. Straubing’s book [Str94] gives the version we use.

11

2.4. LINEAR TEMPORAL LOGIC

2.4 linear temporal logic

Linear temporal logic [Pnu77b] is a logic where we have propositions qualified in terms
of time. A linear temporal logic formula over a set of propositions P is built using the
following syntax

φ ::= p ∈ P | ¬ φ | φ1 ∨ φ2 | Xφ | Yφ | F φ | P φ | φ1 U φ2 | φ1 S φ2

Linear temporal logic (LTL) formulas are interpreted on strings over the alphabet Σ =
2P, the set of all subsets of P. We consider only finite words.

Given a finite string u ∈ Σ+, a position i ∈ N such that 1 ≤ i ≤ |u| and a linear temporal
logic formula φ over P, we denote by (u, i) |= φ that φ is true at position i in the word u.
The semantics of the logic is given below

(u, i) |= p if p ∈ u(i) and p ∈ P
(u, i) |= ¬φ if not (u, i) |= φ

(u, i) |= φ1 ∨ φ2 if (u, i) |= φ1 or (u, i) |= φ2
(u, i) |= Xφ if i < |u| − 1 and (u, i + 1) |= φ

(u, i) |= Yφ if i > 1 and (u, i − 1) |= φ

(u, i) |= φ1Uφ2 if there exists a j ≥ i and (u, j) |= φ2 and for all k,
if i ≤ k < j then (u, k) |= φ1

(u, i) |= φ1Sφ2 if there exists a j such that 1 ≤ j ≤ i and (u, j) |= φ2 and for all k,
if j < k ≤ i then (u, k) |= φ1

We denote by true the statement p ∨ ¬p, where p ∈ P. Then Fφ, Pφ is equivalent to
trueUφ and trueSφ respectively. As usual Gφ abbreviates ¬F¬φ and Hφ abbreviates
¬P¬φ. We also define modalities φ1Ŭφ2, φ1S̆φ2 which are equivalent to X (φ1Uφ2) and
Y (φ1Sφ2) respectively. In fact

(u, i) |= φ1Ŭφ2 if there exists a j > i and (u, j) |= φ2 and for all k, if i < k < j then (u, k) |= φ1

Note that Xφ is equivalent to f alse Ŭ φ and φ1Uφ2 is equivalent to φ2 ∨ (φ1 ∧ φ1Ŭφ2).
Similarly we define F̆ ::= XF, P̆ ::= YP, Ğ ::= XG, H̆ ::= YH.

2.4.1 Modulo counting operators

The modulo counting operators for LTL were introduced by Baziramwabo, McKenzie
and Thérien [BMT99]. The syntax of the operator, for all r, q ∈ N such that q > 1 and
0 ≤ r < q, is as follows.

modF
r,qφ | mod

P
r,qφ

The semantics for these operators are given as follows.

u, i |= modF
r,qφ iff |{i ≤ l ≤ |u| | u, l |= φ}| ≡q r

12

2.4. LINEAR TEMPORAL LOGIC

u, i |= modP
r,qφ iff |{1 ≤ l ≤ i | u, l |= φ}| ≡q r

Observe that the P in the superscript denotes a past operator, whereas the F in the su-
perscript denotes a future operator. Also note that the counting starts from the current
state.

We denote by modF(q) the set of all operators modF
r,q , where 0 ≤ r < q. Similarly we

define modP(q) and mod(q) which is the union of both past and future such operators. That
is

modF(q) =
q−1⋃
0≤r

modF
r,q

modP(q) =
q−1⋃
0≤r

modP
r,q

mod(q) = modF(q) ∪ modP(q)

Similarly we denote by modF and modP the set of all operators modF(q) for all q > 1 and
the set of all operators modP(q) for all q > 1 respectively. We also define mod the set of
all modulo counting operators.

modF =
⋃
q>1

modF(q)

modP =
⋃
q>1

modP(q)

mod = modF
⋃
modP

We now introduce operators which are expressively less powerful than the modulo count-
ing operators we saw above. Let r, q ∈ N such that q > 1 and 0 ≤ r < q. Then the
following are called length counting operators.

`F
r,q | `

P
r,q

The semantics of the formula `F
r,q is equivalent to modF

r,qtrue. That is

u, i |= `F
r,q iff u, i |= modF

r,qtrue

u, i |= `P
r,q iff u, i |= modP

r,qtrue

Using these operators we define the following class of operators.

lenF(q) =
q−1⋃
0≤r

`F
r,q

lenP(q) =
q−1⋃
0≤r

`P
r,q

13

2.4. LINEAR TEMPORAL LOGIC

lenF =
⋃
q>1

lenF(q)

lenP =
⋃
q>1

lenP(q)

len = lenF
⋃
lenP

Note that such formulas can count lengths rather than the number of occurrences of propo-
sitions or formulae.

We also look at the operator dur, which consists of the set of all operators of the form:

modP
r,q p where p ∈ P, the set of propositions

That is the operator can only count the number of occurences of a proposition.

At times we may need to distinguish between the syntax where r and q in the above
operators are given in binary notation and when they are given in unary.

2.4.2 Group operators

Now we follow Baziramwabo, McKenzie and Thérien [BMT99] to generalize the modulo
counting to finite group operators. The syntax of these operators are as follows:

GF
g 〈φ1, . . . , φk〉 | GP

g 〈φ1, . . . , φk〉

Here G is a finite group whose elements are {g1, ..., gk, 1} and g is an element in G. Also 1
denotes the identity of G. Note that the syntax also needs to specify the group multiplica-
tion table and also the ordering of the group elements g1, . . . , gk, but we choose to ignore
it for readability. For an ordered set of formulas Φ = 〈φ1, . . . , φk〉 and a word u ∈

(
2P

)∗
and an l ∈N, such that 1 ≤ l ≤ |u| we define ΓΦ(u, l) ∈ G as follows:

ΓΦ(u, l) =

g1 if w, l |= φ1
g2 if w, l |= ¬φ1 ∧ φ2

...
gK if w, l |= ¬φ1 ∧ · · · ∧ ¬φK−1 ∧ φK

1 otherwise

If Φ is obvious from the context we use Γ(u, l). Then

u, i |= GF
g 〈φ1, . . . , φk〉 iff

|u|∏
l=i

Γ(u, l) = g

u, i |= GP
g 〈φ1, . . . , φk〉 iff

i∏
l=1

Γ(u, l) = g

14

2.4. LINEAR TEMPORAL LOGIC

For a j ≤ K, we denote by ΓΦ
j the formula ¬φ1 ∧ · · · ∧ ¬φ j−1 ∧ φ j. Again we drop the

superscript Φ when the context is obvious.

For a finite group G, we denote by grp(G) the set of all group operators using the group
G. We denote by grp the class of all group operators for all finite groups G. That is

grp =
⋃
G∈G

grp(G)

Observe that this is a generalization of the modulo counting we did earlier, since modulo
counting is similar to working with cyclic groups. For example. modF

1,qφ can be expressed
by the following formula which uses the cyclic group, Cq = {g1, g2

1, g3
1, . . . , gq

1}.

GF
g1
〈φ, f alse, . . . , f alse〉

Succinct representation of groups

There is another way to represent the groups. And that is to use permutation groups
(subgroups of symmetric groups). For instance, we could specify the symmetric group S 5
(shown in Figure 1) using a syntax such as

group S 5 generators (23451), (21345)

which specifies a permutation group named S 5 with two generators defined as permuta-
tions of the elements (1, 2, 3, 4, 5) mapping these elements to the values shown. That is
the notation (23154) denotes the permutation 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 5, 5 7→ 4.
Moreover rather than have formulas for the entire group, we specify only a generator of
the group and have as many formulas as the number of generators. That is, the size of
a group quantifier will depend on the number of generators of the group, rather than the
size of the group itself. This is a succinct way to represent groups.

In general we define a group named G with permutations over the set {1, . . . , n}, n ≥ 2 and
generators S = {g1, . . . , gk}. Again the syntax will look the same.

GF
g 〈φ1, . . . , φk〉 | GP

g 〈φ1, . . . , φk〉

The only difference being how the groups are now encoded and that Γ(u, l) are mapped
to the generators rather than group elements. Notice that g in the syntax above is a group
element, not necessarily a generator of the group. The advantages of this notation are

• Every group is isomorphic to a subgroup of a symmetric group [Her64].

• One can now specify the group elements as a permutation. Moreover the group
multiplication is now implicit and thus the group multiplication table need not be
given along with the formula. This way of representing groups will reduce the size
of the formulas.

15

2.4. LINEAR TEMPORAL LOGIC

• Using the generators is also a succinct way of representing groups. For instance,
the symmetric group S n has n! elements, but can be generated by 2 generators (as
shown in the above example) each generator being a permutation on n elements. In
general, though any group has a generating set of logarithmic size.

Proposition 2.4.1. [vzGG03] Any group has a generating set of logarithmic size.

Proof. Let G be a group. For an H ⊆ G, we denote by 〈H〉 the group generated by
the elements H. Take an element g0 ∈ G. Let H0 = {g0}. If 〈H0〉 , G, take g1
from G\〈H0〉, and call H0 ∪ {g1} as H1. Continue doing this until you find an Hk
such that 〈Hk〉 = G. We prove that ∀i ≤ k : |〈Hi+1〉| ≥ 2 × |〈Hi〉|. Observe that
since gi+1 < 〈Hi〉, it implies gi+1〈Hi〉 ∩ 〈Hi〉 = ∅. Also |gi+1.〈Hi〉| = |〈Hi〉|. But
gi+1.〈Hi〉 ∪ 〈Hi〉 ⊆ Hi+1. Therefore |〈Hi+1〉| ≥ 2 × |〈Hi〉|. Hence 〈Hlog|G|〉 = G. �

• There are permutations on n elements whose order is exponential in n and thus
to represent such groups we only need to use logarithmic many bits in our input
representation.

For example, let p1, ..., pn be the first n prime numbers and ∀i ≤ n, let si be defined
as

∑i
j=1 p j. We claim that the cyclic group (given in cyclic form) generated by

(1, ..., s1)(s1 + 1, ..., s2)....(sn−1 + 1, ..., sn) is of size Πn
i=1 pi. This follows from

the well known fact.

Proposition 2.4.2. [Her75] Order of a permutation given in cyclic form, is the lcm
of the length of its cycles.

Thus to represent the above group of size
∏n

i=1 pi, which is exponential in n, we
require space

∑n
i=1 pi ≤ n2, which is polynomial in n.

Observe that the other direction need not hold. That is, there are groups which
cannot be represented as permutations on sets of size less than the group.

For example, the proposition 2.4.2 gives us that, no generator of a cyclic group of
size 2n can be represented by a permutation on a set of size less than 2n.

Consider the following example. Figure 1 shows the symmetric group S n (for n = 5) as
the transition structure of an automaton. The language accepted can be defined by the
formula

GF
(12...n)〈a, b〉

where G is the group S 5 shown earlier and (12 . . . n) is the identity permutation of the
group.

2.4.3 Extended Temporal Logics

We denote by O the set of all the temporal operators we saw. That is

O = {X, Y, S, U, F, P,mod,mod(q), dur, len, grp, grp(G)}

16

2.4. LINEAR TEMPORAL LOGIC

qastart qb

qdqc

qe

a

a
b

a

bb

a
b

a

Figure 1: An automaton representing the symmetric group S 5

Let S ⊆ O. Then, we denote by tl[S], the logic formed by closing propositionsPwith dis-
junctions, negations, and modal operators from S . For example, the logic tl[U, X, S, Y]
denotes LTL. The logic tl[∅] denotes propositional logic. The logic tl[X, Y, F, P] denotes
UTL. We denote by LTLgrp

LTLgrp = tl[X, Y, S, U, F, P,mod, dur, len, grp]

We also denote by LTLgrp(G) the logic

LTLgrp(G) = tl[X, Y, S, U, F, P, grp(G)]

Similarly LTLmod stands for tl[X,Y,S,U,mod].

Recall that the groups can be represented in “succinct” notation or not, where the succinct
representation of groups are by viewing them as subgroups of symmetric groups and then
using only generators of the groups. When we represent modulo operators we have the
liberty to represent the numbers in binary or unary notation. We denote by LTLgrpbin

for tl[O] if the groups are represented succinctly and the integers in the modulo counting
operators are represented in binary notation. On the other hand we use LTLgrpun to denote
the same logic, where groups are represented by its multiplication table and the modulo
counting operators are represented in unary notation.

Example 2.4.3. Consider the language L′ = {w ∈ {a, b}∗ | |w|a is even}. Again this
language is not expressible in LTL. The following formula in tl[F,mod] expresses L′.

modF
0,2a

Example 2.4.4. Consider a language L ⊆ {a, b}∗ such that the number of times b occurs
such that there are an even number of as to the right of it is 1 (mod 3). That is

L = {w | |{i | w[i] = b and w[i + 1, |w|] contains even number of a}| ≡ 1 (mod 3)}

The following formula uses the expression for the language L′ seen in the previous exam-
ple, to describe L.

modF
1,3

(
b∧ modF

0,2a
)

17

2.4. LINEAR TEMPORAL LOGIC

Example 2.4.5. Let L ⊆ {a, b}∗ be the set of all words of even length. We know that L is
not an aperiodic language (see Straubing’s book [Str94]). We show that the formula is
definable in tl[F,X,len].

The statement “¬(X true)” is true only in the last state of a word. If the last state is an
even position then it satisfies the formula, “`P

0,2”. Combining the conditions gives us a
formula which recognizes L.

F
(
(¬X true) ∧ `P

0,2

)

2.4.4 Other definitions

For a formula φ ∈ LTLgrp we say that φ satisfies a word u if (u, 1) |= φ . Then u is called
a model of φ. We denote by L(φ) the language of φ, that is the set of all the models of
φ. We say that formulas α and β are equivalent if for all words u and for all i such that
1 ≤ i ≤ |u|, we have u, i |= α ⇔ u, i |= β. We say that formulas α,α′ are expressively
equivalent if L(α) = L(α′).

Let S ⊆ O. The satisfiability problem for a logic tl[S] takes as input a formula φ ∈ tl[S].
The problem is to check whether there exists a word u, such that u is a model of φ.

Let P be a set of propositions. A Kripke structure K = (S , R, L, s0) is a rooted transition
system with the following properties: S is a finite set of states, a transition relation R ⊆
S × S , a labelling function L : S → P and an initial state, s0 ∈ S . The model checking
problem for a Kripke structure and a formula α checks whether all runs of the transition
system are models of α.

We say that an LTLgrp formula is a pure future formula if the only modalities used are
future operators. Similarly we say that an LTLgrp formula is a pure past formula if the
only modalities used are past operators. Pure present formulas are those which do not use
any modality. The formula “F modP

r,qα” is neither a pure past or a pure present or a pure
future formula. In such a case we call the formula impure . We say that a formula can
be separated if it can be written as a boolean combination of pure past, pure present and
pure future formulas. A logic satisfies the separation property [Gab87] if all formulas in
that logic can be separated.

We define the future depth (past depth) of a formula inductively. All pure past (future) for-
mula has future (past) depth 0. Future depth of the formulas φ1Uφ2, Xφ1, GF

g 〈φ1, . . . , φk〉

is one more than the maximum of the future depth of the formulas φ1, ..., φk. Similarly the
past depth of the formulas φ1Sφ2, Yφ1, GP

g 〈φ1, . . . , φk〉 is one more than the past depth of
the formulas φ1, ..., φk. The future (past) depth of φ1 ∨ φ2, φ1 ∧ φ2, ¬φ is the maximum of
the future depth of φ1 or φ2.
The operator depth or depth of a formula is the sum of its future depth and past depth.
Similarly the alternation depth of a formula is the number of alternations of its future and
past modalities.

18

2.5. FIRST ORDER LOGIC

2.5 first order logic

Let Σ be a finite alphabet and V = {x1, . . . } be a set of variables. Let us introduce the
syntax of first order logic over word models. The signature τ consists of:

• Unary predicates a, such that a ∈ Σ.

• Binary relation <, which is a linear order.

• Binary relation succ, which is the successor relation, which respects the linear or-
der.

• Binary congruence relations ≡q for all q ∈ N such that q > 1. Let t1 and t2 be two
terms. Then, we say that t1 ≡q t2 iff t1 − t2 is divisible by q. We might also have
unary congruence relations , ≡q r, for all q, r ∈ N such that q > 1 and 0 ≤ r < q.
For a term t we say t ≡q r iff t − r is divisible by q. Let ≡ denote the set of all unary
congruence relations.

• Ternary relation +, which is the addition relation. Sometimes, we use addition as a
function. If not mentioned, always consider addition as a relation.

• Binary relations y = nx, where n ∈N. Note that addition can simulate this relation.

• Constants {0, 1, . . . }

We denote this logic FO[τ].

The τ-terms are defined inductively as follows. Variables and constants are τ-terms.

t ::= x ∈ V | c ∈ {0, 1}

Atomic formulas are inductively defined as follows. If t1, t2, t3 are atomic formulas, then

t is a τ-term | t1 = t2 | t1 < t2 | succ(t1, t2) | t1 ≡q t2 | t1 = t2 + t3

are also atomic formulas. Note that equality is part of our logic.
First order formulas are now defined inductively as follows. All atomic formulas are first
order formulas. If α and β are first order formulas, then the following are also first order
formulas.

¬ α | α ∨ β | α∧ β | α⇒ β | α⇔ β | ∃xα | ∀xα

The implication (⇒), if and only if (⇔), and conjunction (∧) connectives can be simulated
using disjunction (∨) and negation (¬) connective as follows.

α∧ β = ¬(¬α∨¬β),α⇒ β = ¬α∨ β,α⇔ β = (α∧ β) ∨ (¬α∧¬β)

Similarly the for all (∀) quantifier can be simulated using the existential quantifier as
follows:

∀xα = ¬∃x¬α

19

2.5. FIRST ORDER LOGIC

The free variables of a formula is the set of variables which are not quantified. We say
that a formula is a sentence if it does not have any free variables. A formula is called
quantifier free if there are no quantifiers in the formula.

Now we come to the semantics of first order logic. Consider the formula α. Let w be
a word and I be an interpretation which associates each numerical relation of arity k
to a subset of {1, . . . , |w|}k. The free variables are assigned some number in between
1 and |w|. Now the semantics is given inductively. w,I |= a(x), if and only if the
interpretation for x in I is I(l) ∈ [|w|] and w(I(l)) = a. Similarly for a numerical
relation R(x1, . . . , xk), we have that w,I |= R(x1, . . . , xk) if and only if xi is assigned
li ∈ [|w|] for all i ≤ k and (l1, . . . , lk) is a tuple in the interpretation for R in I. The
semantics for conjunction, disjunction and negation are as usual. We say that w,I |= ∃xα
iff there exists an interpretation, I′ which extends I with an assignment for x, and we
have that w,I′ |= α. For an interpretation I we denote by I[x 7→ i] the interpretation
which extends I with the additional variable x being assigned the number i ∈N. Thus

w,I |= ∃xα⇔ there exists an i ≤ n such that w,I[x 7→ i] |= α

In the thesis, we will be looking only at relations less than (<) and addition (+). Therefore
the interpretations for the relations are obvious and hence we drop them from the notation.
Hence our interpretations will contain only assignments to the variables. We also use the
notation w,I 6|= α, if w with the interpretation I does not satisfy α.

Example 2.5.1. ababaa, x = 1, y = 4 |= x < y∧ a(x) ∧ b(x)
ababaa, x = 3, y = 2 6|= x < y∧ a(x) ∧ b(x)

The following theorem [Kam68, Gab87] connects LTLwith first order logic over words.

Theorem 2.5.2. [Kam68, Gab87] LTL is expressively complete for FO[<]

The theorem states that for all first order logic formula φ(x) with one free variable, there
exists a formula ψ in LTL such that for all words u and ∀i where 1 ≤ i ≤ |u| we have that

u, i |= φ⇔ u, i |= ψ

2.5.1 Counting quantifiers

We now introduce the syntax for counting capabilities. First we introduce unary counting
quantifiers [GOR99, Ruh99a, Sch05]

∃∼yxα

Here α is inductively defined and x, y ∈ V the set of variables and ∼∈ {<,=,>}. The
semantics is given as follows. Let w be a word over the alphabet of α. Then

w,I |= ∃∼yxα⇔ |{l | w,I[x 7→ l] |= α}| ∼ I(y)

20

2.5. FIRST ORDER LOGIC

The majority quantifier, Maj x φ(x) is given as follows.

w |= Maj x φ(x)⇔ |{i | w |= φ(i), i ≤ |w|}| >
|w|
2

The unary counting quantifiers and majority quantifiers are not regular quantifiers, since
they can define non-regular languages even if the only relation present is equality.

In the more restricted case, we have modulo counting quantifiers, introduced by Straubing,
Thérien and Thomas [STT95]. Here counting terms cannot be compared with variables,
but they can be compared only with a constant modulo a number. Here is the syntax for
modulo counting quantifiers.

∃(r,q)x(α)

The semantics is given as follows.

w,I |= ∃(r,q)x(α)⇔ |{l | I, s[x 7→ l] |= α}| ≡ r mod q

Note that both the above quantifiers can simulate binary (and unary) congruence relations.

2.5.2 Monoid/Group quantifiers

Now we follow Barrington, Immerman and Straubing [BIS90] to generalize the modulo
counting quantifiers to monoid quantifiers. We view monoid quantifiers as a special case
of Lindström quantifiers [Lin66]. The formal definition of a monoid quantifier [BIS90] is
as follows. Let M = {m1, . . . , mK , 1} be a monoid with K + 1 elements. For an m ∈ M,
the quantifier Qm

M is applied on K formulas. Let x be a free variable and φ1(x), . . . , φK(x)
be K formulas. Consider the word u ∈ M∗, where the ith letter of u is given as follows.
Let 1 ≤ i ≤ |w|.

u(i) =

m1 if w, i |= φ1
m2 if w, i |= ¬φ1 ∧ φ2

...
mK if w, i |= ¬φ1 ∧ · · · ∧ ¬φK−1 ∧ φK

1 otherwise

Then

w |= Qm
M x〈φ1(x), . . . , φK(x)〉 ⇔

|w|∏
i=1

u(i) = m

This generalizes the modulo counting we were doing earlier, which can be thought of
as working with cyclic groups. The set of all monoid quantifiers where the monoids are
groups are called group quantifiers

21

2.5. FIRST ORDER LOGIC

2.5.3 Extended first order logic

Earlier we defined τ = {a, a ∈ Σ,<,+,≡, succ}. Let υ ⊆ τ be a signature, such that υ
contains unary predicates a, where a ∈ Σ. Then we denote by FO[υ], first order logic
using the relations and constants in υ. We denote by FOunC[υ] the logic extending first
order logic with unary counting quantifiers.

maj[<] denotes the logic closed under majority quantifiers. It is known that the majority
quantifiers are equivalent to unary counting quantifiers [Ruh99a]. A detailed study of
majority quantifiers can be found in the thesis of Krebs [Kre08].

Closing FO[υ] under modulo counting quantifiers give us FOmod[υ]. Let t be an atomic
formula in FO[υ]. Then the logic FOmod[υ] is defined as

φ ::= t | φ1 ∨ φ2 | ¬φ | ∃xφ | ∃r,qxφ, for q > 0, 0 ≤ r < q

If the only modulo counting quantifiers used are of the form ∃r,q, r < q for a fixed q, then
the logic is called FOmod(q)[υ]. Extending FO[υ] with group quantifiers, give us the logic
FOgrp[υ]. If the only group we use is G, then we get the logic FOgrp(G)[υ]. Similarly if
the only quantifiers used are group quantifiers then the logic will be denoted by group[υ].

Let S be a set of monoids. Then, we define the logic LS[υ] to be built from the, the
binary predicate {=}, the predicates in υ, the variable symbolsV, the Boolean connectives
{¬,∨,∧}, and the monoid quantifiers Qm

M, where M ∈ S is a monoid and m ∈ M. We also
identify the logic class LS[υ] with the set of all languages definable in it.

The following “shorthand” notation is used to avoid clutter. We denote by Qm
M x φ 〈α1, . . . ,αK〉,

the formula Qm
M x〈φ∧ α1, . . . , φ∧ αK〉. Informally, this relativizes the quantifier to the po-

sitions where φ is true, by multiplying with the identity of M in all other places.

Consider the monoid U1. It is easy to see that the word problem defined by U1 and the set
{0} defines the regular language 1∗0{0, 1}∗. Then Q0

U1
is same as the existential quantifier

∃, since any formula ∃xφ is equivalent to Q0
U1

x 〈φ〉. So the logic LU1 [<] denotes first-
order logic, FO[<]. Let Cq stand for the cyclic group with q elements. Then the quantifiers
Q1

Cq
corresponds to the modulo counting quantifiers we defined earlier.

The following result connects semigroups and monoid quantifiers. It gives an algebraic
characterization for the logic LS[<].

Lemma 2.5.3 ([Str94]). Let S ⊆ M and L ⊆ Σ∗ be such that M is the smallest monoid
which recognizes L. Then L is definable in LS[<] iff M divides a monoid in bpc(S).

The notation FOk[υ] denotes the sublogic of FO[υ] which uses only k variables. The logic
permits reuse of variables though.

22

2.5. FIRST ORDER LOGIC

Presburger arithmetic is the first order theory of the natural numbers with addition. That
is the signature does not contain any unary alphabet. The binary relations are linear order
and addition. We denote this logic as FO over (N,<,+).

We denote by qd(α), the quantifier depth of a formula α. We say that a formula α is satis-
fiable, if there is a word w and an interpretation which is a model for α. The satisfiability
problem for a logic takes as input a formula in that logic and decides whether the formula
is satisfiable or not. For a sentence φ, we define the language of φ, L(φ) = {w | w |= φ}.

2.5.4 Few examples

Let us look at a few examples of the logics we have defined above.

Example 2.5.4. Even length words can be expressed in FO[<,≡] by

∃max ∀y max ≥ y∧ (max ≡ 0(mod 2))

It says that the variable “max” is the last position in the word and it is even.

Example 2.5.5. On the other hand even number of letter a requires an FOmod[<] for-
mula:

∃(0,2)x(a(x))

Example 2.5.6. Let L = (ab + ba)∗. The logic FO2[<, succ,≡] can express L

∀x∀y(succ(x, y) ∧ x ≡ 1(mod 2)⇒ ((a(x)⇒ b(y)) ∧ (b(x)⇒ a(y))

The formula says that if there is an a (b) at an odd position then its successor position
should be a b (a).

Example 2.5.7. The “dot depth k” language which allows at most k more a’s than b’s can
be defined in FO2unC[<, succ]. The formula below which uses addition can be written
using successor and taking k + 1 disjuncts:

∀x((#y(y ≤ x ∧ a(y) ≤ y) ∧ (y ≤ #y(y ≤ x ∧ b(y)) + k))

Note that we only used two variables.

23

Part II

R E G U L A R L A N G UAG E S : E X T E N S I O N S T O F I R S T
O R D E R L O G I C W I T H L I N E A R O R D E R I N G

3

S U RV E Y O N R E G U L A R L A N G UAG E S

3.1 expressiveness

Regular languages are among the most studied area in computer science. Kleene’s the-
orem [Kle56] established that regular expressions and finite automata have the same ex-
pressive power. Results of Myhill [Myh57] and Nerode [Ner58] showed that regular lan-
guages have finite index. Eilenberg (see book [Eil76]) looked at regular languages from
an algebraic point of view and finally Büchi [B6̈0] gave language preserving (and also
effective) translations between monadic second order logic and finite automata.

The most important fragment of regular languages, are the set of languages definable
by first order logic (with <). This fragment, which can be characterized by temporal
logics, has found considerable practical applications. On the other hand, the fragment
has nice algebraic properties and other interesting characterizations. The Figure 2 and the
following theorem gives some of them.

A SF

FO[<] LTL

[Sch65]

[Gab87]

[Kam68][RS71]

Figure 2: Star free Languages; Different characterizations

Theorem 3.1.1. The following are equivalent.

1. L is definable in FO[<].

2. L is definable by a star free expression.

25

3.1. EXPRESSIVENESS

3. L is recognized by an aperiodic monoid (A).

4. L is definable by linear temporal logic.

5. L is recognized by alternating finite automata without loops.

6. L is definable in the three variable fragment of FO[<].

7. L is definable in Interval temporal logic (ITL).

Schützenberger’s theorem [Sch65] showed the equivalence of (2) and (3). Kamp [Kam68]
then showed that LTL and star free expressions are expressively equivalent. The equiva-
lence of (1) and (2) was shown by McNaughton and Papert [RS71]. The equivalence of
(2) and (5) was shown by Salomaa and Yu [SY00]. A direct proof of the equivalence of
LTL and FO[<]was given by Gabbay [Gab87] (Prior [Pri56], Pnueli [Pnu77a], Gabbay,
Pnueli, Shelah and Stavi [GPSS80]). It is easy to give a translation from formulas in LTL
to formulas in FO[<] with three variables, which shows that for every FO[<] formula
there is an equivalent formula in FO[<] which uses only three variables. See Lodaya et al.
[LPS10] for the equivalence of ITL and FO[<].

3.1.1 Group quantifier Extensions

We look at extending these logics with monoid (group) quantifiers. Barrington, Immer-
man and Straubing [BIS90] showed using the Krohn-Rhodes decomposition of finite
monoids that the regular languages can also be described by FOgrp[<], first order logic
extended with group quantifiers.

Baziramwabo, McKenzie, Thérien [BMT99] use the Krohn-Rhodes decomposition (see
Theorem 2.3.4) of monoids to show that LTLgrp formulas, LTL extended with group
computation modalities, are equivalent to regular languages. This also establishes the
three-variable property for FOgrp[<]. We capture all these results in the following figure
3 and theorem 3.1.2

Theorem 3.1.2. Let G be a finite group. The following are equivalent.

1. L is definable in FOgrp(G).

2. L is definable in LTLgrp(G).

3. L is recognized by a monoid in bpc{U1, G}.

We show the equivalence of 1 and 2 by proving that LTLgrp(G) satisfies the seperation
property 1. The property was used by Gabbay [Gab87] to show the expressive equivalence
of LTL and FO[<]. Gabbay showed that all formulas in LTL can be seperated.

1 Seperation property was defined in Preliminaries

26

3.1. EXPRESSIVENESS

bpc{U1, G}

FOgrp(G)LTLgrp(G)

[BMT99] [Str94]

Figure 3: Group quantifiers - The double line is our contribution.

Theorem 3.1.3. [Gab87] The logic LTL satisfies the separation property

This result also shows that every LTL formula is initially equivalent to a formula in
tl[X,U] (that is LTL without any past modalities). That is for any formula φ in LTL,
there exists a formula φ′ in tl[X,U] such that for all words u we have that

u, 1 |= φ⇔ u, 1 |= φ′

Therefore

Theorem 3.1.4. [Sch02], [Kam68] Every LTL formula is initially equivalent to an tl[X,U]
formula.

We give a similar result for the logic LTLgrp(G).

3.1.2 A sublogic

We saw earlier that every FO[<] formula is expressively equivalent to an FO[<] formula
in three variables. The subclass of logic which uses only two variables is also interesting.
As far as expressiveness is concerned it is less powerful. It is known (see [TW98] for
example) that the logic FO2[<] is a strict subset of FO2[<, succ] which is a strict subset
of FO[<]. The two variable fragment, FO2[<] characterizes the class of unambiguous
languages. This class also has other interesting characterizations as given in Figure 4 and
the following theorem.

Theorem 3.1.5. The following are equivalent.

1. L is definable in FO2[<].

2. L is an unambiguous language.

3. L is recognized by a monoid in variety DA.

27

3.1. EXPRESSIVENESS

DA UL

FO2[<] UTL

[TW98]

[Sch76]

[EVW02]

Figure 4: Unambiguous Languages; Different characterizations

4. L is definable in UTL.

5. L is in Σ2[<] ∩Π2[<].

6. L is definable in Unambiguous interval temporal logic (UITL).

The equivalence of (2), (3) and (5) were shown in [Sch76] and [PW97] and (1) and (4)
where shown to be equivalent by Etessami, Vardi and Wilke [EVW02]. See Lodaya et al.
[LPS10] for the equivalence of (6) and (1). Finally, the equivalence of (1) and (3) were
shown in [TW98].

Straubing, Therien and Thomas show in [STT95] that every formula in FOmod[<] (the
logic got by extending FO[<] with modulo counting quantifiers) is equivalent to a for-
mula in FOmod[<] with only three variables. The authors also looked at the two variable
sublogic and showed that it is a strict subset. They also show that the class is equivalent to
the set of languages recognized by the variety DA ∗Gsol 2. Straubing and Therien [ST03]
also observed the following interesting property

FO2mod[<]∩ FO[<] * FO2[<]

Consider the language L = (ab)∗. It can be defined in FO2mod[<] as follows 3:

∀y b(y)⇔ ∃(0,2)x(x < y)

It states that a word is in L iff in the word the letter b is in a position if and only if it is an
even positions. It is also possible to show that L is definable in FO[<] and not definable
in FO2[<].

In Chapter 4 we show the equivalence of LTLgrp and FOgrp[<]. In fact we give a direct
translation of an FOgrp[<] formula to an LTLgrp formula. The proof goes via showing a
“separation property” for LTLgrp.

2 Gsol denotes the set of all solvable groups
3 The syntax/semantics is given in the Preliminaries chapter 2

28

3.2. SATISFIABILITY AND MODEL CHECKING

3.2 satisfiability and model checking

The satisfiability and model checking questions for first order logic has been looked at by
Meyer and Stockmeyer [SM73]. From the construction of Büchi [B6̈0] we know that any
formula in first order logic can be translated into some automata in non-elementary time
4. Thus the question of satisfiability of first order logic gets reduced to non-emptiness in
automata. Thus we get an upper bound of non-elementary time for satisfiability of first
order logic. Stockmeyer [Sto74] gives a corresponding lower bound also, which is an
extension of the work of Meyer and Stockmeyer [SM73] showing that the non-emptiness
of starfree regular languages is in non-elementary time.

Theorem 3.2.1. [B6̈0, Sto74, SM73] The satisfiability of FO[<] has an upper bound of
non-elementary space.
The satisfiability of FO[<] has a lower bound of non-elementary space.
[Var82] The model checking of FO[<] is Pspace-complete.

The satisfiability of the two variable fragment of FO[<] has also generated considerable
interest. Etessami, Vardi and Wilke [EVW02] first showed that the satisfiability of FO2[<]
is Nexptime-complete, whereas from [Sto74] we have that the satisfiability of FO[<] is
non-elementary complete. Weis and Immerman [WI09], then showed that FO2[<] is Np-
complete, if the alphabet size is constant, whereas FO2[<, succ] is Nexptime-complete
even for constant alphabet size.

Theorem 3.2.2. [EVW02] The satisfiability of FO2[<] is Nexptime-complete for a grow-
ing alphabet.
[EVW02] The satisfiability of FO2[<, succ] is Nexptime-complete for any alphabet.
[WI09] The satisfiability of FO2[<] is Np-complete for a constant alphabet.

Let us now turn to Linear temporal logic. The advantage of LTL over FO[<] is that there
is a fast reduction from LTL to automata. This permits faster algorithms for checking for
satisfiability of this logic. Hence LTL has found wide use as a specification language in
industry. From the results of Pnueli [Pnu77c] we know the following.

Theorem 3.2.3. [Pnu77c, SC85] The satisfiability and model checking problem for LTL
is Pspace-complete.
The hardness holds even for the logic tl[X,F].

We can do better if X is not present.

Theorem 3.2.4. [ON80] The satisfiability and model checking problem for tl[F,P] is
Np-complete.

4 The height of the tower corresponds to the alternation between negations and existential quantifiers in the
first order logic formula.

29

3.2. SATISFIABILITY AND MODEL CHECKING

Serre had looked at the satisfiability of LTLmod in [Ser04]. He reduced the problem to
emptiness checking in alternating finite automata and showed a Pspace-upper bound. But
his method assumes that the “numbers” used to denote modulo counting are represented
in unary notation. Hence, if the numbers are represented in binary notation, his approach
gives an Expspace-upper bound. We later show in Chapter 5 that this can be improved to
Pspace even for binary notation.

Theorem 3.2.5. [Ser04] The satisfiability and model checking problem for LTLgrp is in
Expspace.

A comparison of these results have been collected in Table 1.

Membership for words Emptiness/non-satisfiable
DFA Logspace-complete [JR91] Nlogspace-complete
NFA Nlogspace-complete [JR91] Nlogspace-complete
SF P-complete [Pet02, Pet00] Non-Elementary-complete [SM73]
FO[<] Pspace-complete [Var82] Non-Elementary-complete [Sto74]
FO2[<] P Np-complete [WI09]
FO2[<, succ] P Nexptime-complete [EVW02]
LTL NC1-hard,P [DS02] Pspace-complete [SC85]
LTLmod NC1-hard,P Expspace [Ser04]

Table 1: Comparison of Satisfiability/Membership of word models for various logics (as-
sumes constant alphabet). Note that the model checking problem for LTL is Pspace-hard,
where the given model is a Kripke structure. This table assumes that the given model is a
word.

We look at the satisfiability and model checking problems for these logics when extended
with modulo counting quantifiers and group quantifiers.

In Chapter 5 we look at the satisfiability and model checking for LTLgrp and its sublogics.

In Chapter 6 we look at these questions for FO[<] with modulo counting (and group
quantifiers) and its various sublogics, especially the two variable fragment of this logic.

30

4

LT L G R P E X P R E S S I V E N E S S (E Q U I VA L E N C E W I T H F O G R P [<])

4.1 introduction

In this chapter we give a Gabbay-style [Gab87] separation-based proof of the equivalence
of LTLgrp and FOgrp[<]. We show that LTLgrp(G) has the separation property and using
that to show that the logic is equivalent to FOgrp(G)[<].

We also look at unary temporal logic UTL[EVW02]. Recall that UTL=tl[X,Y,F,P]. We
extend the technique of Etessami, Vardi and Wilke ([EVW02]) to show that UTL extended
with group operators has the same expressive power as FOgrp[<, succ] which uses only
two variables.

In sections 4.2 and 4.2.1 we will be working over the strict until, Ŭ and strict since, S̆
modalities. Note that, strict until (strict since) can be simulated by until (since) and next
(yesterday) operator and vice versa.

Recall from the Preliminaries that for an ordered set of formulas 〈φ1, . . . , φk〉, the notation
Γ j denotes the formula φ j ∧

∧
i< j ¬φi.

4.2 properties of ltlgrp

We first look at certain properties of the logic LTLgrp. Our first observation is that the
formulas in LTLgrp have a normal form.

Theorem 4.2.1. Let α ∈ LTLgrp. Then there exists a group Gα and a formula α̂ ∈

LTLgrp(Gα) such that α and α̂ are expressively equivalent. That is for all word models u
and for all i ≤ |u|

u, i |= α⇔ u, i |= α̂

Proof. Take Gα to be the cross product of all the groups in α. Now any group G can be
replaced by Gα by suitably choosing the accepting group element. �

31

4.2. PROPERTIES OF LTLGRP

Hence we can always work with formulas over LTLgrp(G), for some group G. Our next
theorem says that the future group operator can simulate the past group operator (and vice
versa) in the presence of future and past operators.

Theorem 4.2.2. Let α ∈ LTLgrp(G). Then α is equivalent to a formula α̂, where α̂ do not
contain any past group operator.

Proof. We replace all past group operators by future group operators as follows. Let
β := GP

g 〈φ1, . . . , φk〉 be a formula. Assume that all the formulas φ1, ..., φk do not contain
any past group operator. We claim that β is equivalent to

β̂ =
∨

l, j∈[k]

GF
gl
〈φ1, . . . , φk〉 ∧ P̆ H̆ GF

g.g−1
j .gl
〈φ1, . . . , φk〉 ∧ Γ j

We use Figure 5 to explain the equivalence. Let u be a word and i ≤ |u| such that u, i |= β.
Then

∏i
r=1 Γ(u, r) = g (the group value at a point is denoted by Γ. See Preliminaries

chapter 2). There exists some l, j ∈ [k] such that Γ(u, i) = g j,
∏|u|

r=i Γ(u, r) = gl and∏|u|
r=1 Γ(u, r) = g.g−1

j .gl.

Therefore u, i |= β iff u, i |= β̂. �

1︸ ︷︷ ︸
g6

u u
-

g.g−1
j gl

gl -

g j

i?

Figure 5: Future Group modality can simulate Past Group modality

Observe that the formula β̂ in the proof above is an impure formula, even if β was one.
This takes us to the next section, where we show that any formula in LTLgrp(G) can be
written as a boolean combination of pure formulas.

4.2.1 Separation property of LTLgrp

We say that a formula can be separated if it can be written as a boolean combination of
pure past, pure present and pure future formulas. We say that a logic satisfies the sepa-
ration property [Gab87] if all formulas in that logic can be separated. Gabbay [Gab87]
showed that LTL satisfies the separation property.

We next show that the logic LTLgrp(G), for a finite group G has the separation property.
The proof is given by a series of technical lemmas. The translations given below in
Lemma 4.2.3 is the base case for the full proof.

Lemma 4.2.3. The following formulas can be separated.

32

4.2. PROPERTIES OF LTLGRP

1. GF
g 〈(aS̆b∧ β) ∨ φ1, . . . , φk〉

2. GF
g 〈(G

P
g′〈γ1, ..., γk〉 ∧ β) ∨ φ1, . . . , φk〉

3. α1Ŭ(GP
g′〈γ1, ..., γk〉 ∧ α2)

4. (GP
g′〈γ1, ..., γk〉 ∨ α2)Ŭα1

5. GP
g 〈(aŬb∧ β) ∨ φ1, . . . , φk〉

6. GP
g 〈(G

F
g′〈γ1, ..., γk〉 ∧ β) ∨ φ1, . . . , φk〉

7. α1S̆(GF
g′〈γ1, ..., γk〉 ∧ α2)

8. (GF
g′〈γ1, ..., γk〉 ∨ α2)S̆α1

Proof. (1): Consider a word u as given in Figure 6. Let x be the position such that
u, x |= GF

g 〈(aS̆b ∧ β) ∨ φ1, . . . , φk〉. Consider positions y, z such that x < y < z and
u, y |= b and u, l |= a for all l, where y < l < z. Moreover let u, z |= β. That is z is where
aS̆b ∧ β is true. Observe that (y, z) is a block of states which satisfy aS̆b formula. Our
idea is to get the group value computed in this interval. We consider the case where x
does not satisfy the formula aS̆b (the solution can be easily modified to the case when x
satisfies aS̆b).

u uu
x
6

y
6

b

-g′
-�g = g′g′′−1 z
6

β

-g′′

︷ ︸︸ ︷a

Figure 6: Timeline for aS̆b∧ β

Let Θ = 〈φ1, ..., φk〉. We now give a formula ψg which is true at all positions which satisfy
b∧ aŬβ and the group value computed for the block of as until β is g.

ψg :=
∨

g′=g.g′′
b∧ (aŬ(β∧GF

g′′Θ)) ∧GF
g′Θ

Thus ψg is true at y iff the group value in the interval (y, z) is g. Let γ = ¬(b ∧ aŬβ).
Now the following formula is equivalent to the original formula.

GF
g 〈(γ ∧ φ1) ∨ ψg1 , ..., (γ ∧ φk) ∨ ψgk〉

The formula evaluates φis only when the position satisfy γ. Otherwise one of the ψgis
would have calculated the group value for the entire block.
(2,3,4): Consider the word u given in Figure 7. Let us assume that the position x is such
that

u, x |= GP
gi
〈γ1, . . . γk〉 ∧ Γl ∧ GF

g j′
〈γ1, . . . , γk〉

33

4.2. PROPERTIES OF LTLGRP

Take h = gl.g j′ and let u, y |= GP
g′〈γ1, ..., γk〉. Then the group value of the interval (x, y) is

m = g−1
i g′. Therefore the group value of points from y onwards is m−1h which is g′−1gih

Then any point in the future will satisfy GP
g′〈γ1, ..., γk〉 iff it also satisfies GF

g′−1gih
〈γ1, ...γk〉.

That is
u, y |= GP

g′〈γ1, ..., γk〉 ⇔ u, y |= GF
g′−1gih

〈γ1, ...γk〉

This lets us replace the past group operator with a future group operator and vice versa.
(5,6,7,8): These formulas are got by replacing past operators with future operators and
vice versa in the formulas in 1,2,3,4. By the same arguments above we can show that
these formulas can also be separated.

︸ ︷︷ ︸
g′g−1

i
6 6

u u
x y

� gi

g′
�

-
h

-g′−1gih

Figure 7: Timeline for GP
g′〈...〉

�

Lemma 4.2.4. The following translations are equivalent.

1. α1S̆(α2 ∨ α3) ≡ α1S̆α2 ∨ α1S̆α3

2. (α1 ∧ α2)S̆α3 ≡ α1S̆α3 ∧ α2S̆α3

3. ¬(aS̆b) ≡ (¬bS̆¬a) ∨ H̆¬b

4. ¬GP
g 〈φ1, . . . , φk〉 ≡

∨
g,gi GP

gi
〈φ1, . . . , φk〉

5. α1Ŭ(α2 ∨ α3) ≡ α1Ŭα2 ∨ α1Ŭα3

6. (α1 ∧ α2)Ŭα3 ≡ α1Ŭα3 ∧ α2Ŭα3

7. ¬(aŬb) ≡ (¬bŬ¬a) ∨ Ğ¬b

8. ¬GF
g 〈φ1, . . . , φk〉 ≡

∨
g,gi GF

gi
〈φ1, . . . , φk〉

Proof. The correctness of (4) and (8) follows from the semantics of the group operator.
The rest of the statements are standard LTL equivalence statements. These can be found
in [Gab87]. �

Lemma 4.2.3 and Lemma 4.2.4 let us replace past operators nested inside future opera-
tors by future operators. Observe that there are dual Lemmas where the past operator is
replaced by the future operator and vice versa. Using these two lemmas we give a series
of lemmas to show that formulas in LTLgrp can be separated. These lemmas are proved
using induction on the structure of the formula.

34

4.2. PROPERTIES OF LTLGRP

Lemma 4.2.5. 1. Let a, b be propositional formulas. Let α, β and φ1, ..., φk be formu-
las where Ŭ appears only in the subformula aŬb. Then αS̆β, GP

g 〈φ1, . . . , φk〉 can be
separated.

2. Let a, b be propositional formulas. Let α, β and φ1, ..., φk be formulas where S̆
appears only in the subformula aS̆b. Then αŬβ, GF

g 〈φ1, . . . , φk〉 can be separated.

Proof. Observe that the (ii)nd statement is the (i)st statement with past modalities re-
placed by future modalities and vice versa. We prove (i) now.
Gabbay [Gab87] shows how to separate the formula αS̆β. So let us consider the for-
mula GP

g 〈φ1, . . . , φk〉. Let each φi be a boolean combination of aŬb and propositions. To
rewrite GP

g 〈φ1, . . . , φk〉 as boolean combination of pure Future and pure Past formulas, we
apply the transformations given in Lemma 4.2.3 repeatedly which gives us a separated
formula. �

Lemma 4.2.6. 1. Let a1, ..., ak be propositional formulas. Let α, β and φ1, ..., φk be
formulas having only the modality GF

g 〈a1, ..., ak〉. Then αS̆β, GP
g′〈φ1, . . . , φk〉 can be

separated.

2. Let a1, ..., ak be propositional formulas. Let α, β and φ1, ..., φk be formulas having
only the modality GP

g 〈a1, ..., ak〉. Then αŬβ, GF
g′〈φ1, . . . , φk〉 can be separated.

Proof. Repeated application of Lemma 4.2.3 and Lemma 4.2.4 give us a separated for-
mula. �

We now look at formulas where an until modality (since modality) is nested inside a past
modality (future modality).

Lemma 4.2.7. 1. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β and φ1, ..., φk
be formulas where Ŭ appears only in subformulas of the form Ui = aiŬbi, for all
i ≤ n. Then αS̆β, GP

g 〈φ1, . . . , φk〉 can be separated.

2. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β and φ1, ..., φk be formulas
where S̆ appears only in subformulas of the form S i = aiS̆bi, for all i ≤ n. Then
αŬβ, GF

g 〈φ1, . . . , φk〉 can be separated.

Proof. We prove (i) and claim that the proof for (ii) is similar. When ψ = αS β, this can
be separated by the arguments of Gabbay. So let ψ = GP

g 〈φ1, . . . , φk〉. Let {U1, ..., Un} be
the n Until formulas used in the φis. We first replace the Until formulas U1, ..., Un−1 by
new propositions p1, ..., pn−1. Let the new formula be called ψ̂. By Lemma 4.2.5 we know
that we can find a separated formula equivalent to ψ̂. Now replace pn−1 in the formula by
Un−1 and again apply Lemma 4.2.5. Observe that we did not introduce any new Untils
when we separated. After n rounds we get a formula which is separated. �

Lemma 4.2.8. 1. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β and φ1, ..., φk
be formulas having only the modality GF

g 〈a1, ..., ak〉. Then αS̆β, GP
g′〈φ1, . . . , φk〉 can

be separated.

35

4.2. PROPERTIES OF LTLGRP

2. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β and φ1, ..., φk be formulas
having only the modality GP

g 〈a1, ..., ak〉. Then αŬβ, GF
g′〈φ1, . . . , φk〉 can be sepa-

rated.

Proof. The proof is similar to the proof of Lemma 4.2.7. In (i) we replace ∀i < n, GF
g 〈a1, ..., ak〉

by new propositions pi. We then apply 4.2.5 and continue as in the proof of Lemma
4.2.7. �

Lemma 4.2.9. 1. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β be formu-
las having only the modality ∀i ≤ n : Ui = aiŬbis or GF

g 〈a1, ..., ak〉. Then αS̆β,
GP

g′〈φ1, . . . , φk〉 can be separated.

2. Let a1, ..., an, b1, ..., bn be propositional formulas. Let α, β be formulas having only
the modality ∀i ≤ n : Ui = aiS̆bis or GP

g 〈a1, ..., ak〉. Then αŬβ, GF
g′〈φ1, . . . , φk〉 can

be separated.

Proof. The proof is by combining the two Lemma 4.2.7 and Lemma 4.2.8. �

Now we look at formulas having future (past) modalities but without any past (future)
modality nested inside a future or a past modality. That is no modality is nested inside
a Future (Past) modality, but Past and Future modalities can be nested with Past (Future)
modality.

Lemma 4.2.10. 1. Let a1, ..., ak, b1, ..., bk be propositional formulas. Let α be a for-
mula such that the Future modalities are of the form ∀i ≤ n : Ui = aiŬbis or
GF

g 〈a1, ..., ak〉. Then α can be separated.

2. Let a1, ..., ak, b1, ..., bk be propositional formulas. Let α be a formula such that the
Future modalities are of the form ∀i ≤ n : Ui = aiS̆bis or GP

g 〈a1, ..., ak〉. Then α
can be separated.

Proof. We prove (i) and claim that the proof for (ii) is similar. Let the Past depth be n. If
n = 0 the claim is trivially true. When n = 1 the claim follows from Lemma 4.2.9. For
depth n > 1 we repeatedly apply Lemma 4.2.9 to the most deeply nested Past modality.
After each application of the Lemma the depth of the Past modality is reduced and hence
after n steps we get a separated formula. �

Now we consider formulas which can have Future modalities nested inside the Past modal-
ity.

Lemma 4.2.11. Let α be a formula such that no Past (Future) modality is nested inside a
Future (Past) modality. Then α can be separated.

Proof. The proof is by induction on the depth n of the Future (Past) modality. n = 1 was
proved by Lemma 4.2.10. When n > 1, we replace all Future (Past) modalities at Future

36

4.2. PROPERTIES OF LTLGRP

(Past) depth ≥ 2 by new propositions pi. Let the resultant formula be α̂. Observe that the
Future (Past) depth of α̂ is one and hence can be separated by Lemma 4.2.10. Now replace
all the pis by the Future (Past) modalites we replaced them with. Observe that we have
reduced the Future (Past) depth. We repeat the above process until we get a separated
formula. �

Finally we show that any formula α ∈ LTLgrp can be separated.

Theorem 4.2.12. Let α be an LTLgrp(G) formula. Then α can be separated.

Proof. This involves induction on the alternation depth n of the formula α. n = 1 was
proved in Lemma 4.2.11. When n > 1, we replace the modalities by propositions such that
we get a formula α̂ which is of alternation depth one. Lemma 4.2.11 will give a separated
α̂′ formula equivalent to α̂. Now replace the propositions in α̂′ with the modalities we
had earlier replaced with. The formula we get is of alternation depth lesser than α. Hence
we can repeat the procedure until we get a formula which is separated. �

Corollary 4.2.13. Let α be an LTLgrp formula. Then α can be separated.

Proof. From Theorem 4.2.1 we know that there exists an equivalent formula α̂ ∈ LTLgrp(G)
for some finite group G. Then Theorem 4.2.12 gives us separation. �

Corollary 4.2.14. Every LTLgrp formula is initially equivalent to a formula with only
future modalities.

Proof. Let α be an LTLgrp formula. By Theorem 4.2.12 α can be separated. We can
now replace the past formulas with false since all statements regarding past are false at
the 1st position. The resultant formula which is equivalent to α now contains only future
modalities. �

4.2.2 Expressive Completeness of LTLgrp

Lemma 4.2.15. LTLgrp has separation property iff it is expressively complete for FOgrp[<].

Proof. (⇐): Let α be an LTLgrp formula. We can now write a first order logic formula,
α′(x) on free variable x, such that it is equivalent to α. First order logic formulas can
be separated using relativization. This can be proved by induction on the structure of the
formula. The atomic case is trivial. Formulas of form ∃yφ(x, y) can be replaced by

∃y((y < x) ∧ φ(x, y)) ∨ φ(x, x) ∨ (∃y(y > x ∧ φ(x, y)))

Now a formula of type ∃y(y > x ∧ φ(x, y)) can be replaced by a pure future LTLgrp
formula (since LTLgrp is expressively complete for FOgrp[<]). Similarly we can replace

37

4.2. PROPERTIES OF LTLGRP

pure past and pure present FOgrp[<] formulas by pure past and pure present LTLgrp for-
mulas. A similar proof can be given for group quantifiers too.
Now since LTLgrp is expressively complete for FOgrp[<] each of the separated formulas
can be replaced with LTLgrp formulas. This gives us a separated formula.
(⇒): We show that for an FOgrp[<] formula with one free variable we can give an equiv-
alent LTLgrp formula. Let P1, ..., Pn be the unary predicates. The proof is by induction
on the quantifier depth. For the base case we assume formulas with no quantifiers. This
consists of boolean combination of formulas of the form Pi(x). The translation of this
formula will be boolean combination of formulas of the form pi.
Now let us assume that all FOgrp[<] formulas with one free variable and of quantifier
depth < k over any constant number of unary predicates (alphabet) can be converted into
an LTLgrp formula. Let Q be a quantifier. Consider the formula ψ(x) = Qy φ(x, y) such
that φ is of quantifier depth < k. We first remove x from ψ as follows. All subformulae of
the form x = x, x < x, x > x are replaced by >,⊥,⊥ respectively. Now we rewrite φ as
follows (here ~v ∈ {0, 1}n):

φ̂(x) =
∨

~v={0,1}n
((

n∧
i=1

Pi(x)⇔ vi)⇒ φ~v(x))

Here φ~v(x) replaces all occurrences of subformulas of the form Pi(x) with >,⊥ de-
pending on vi. Now the subformulas in each of φ~v containing x will be of the form
x < z, x > z, x = z, where z is some other variable in φ. We remove these formulae by
introducing three new unary predicates R<, R>, R= and replacing x op z by Rop(z) (op
:= {<,>,=}). The resultant formula φ~v will not contain any occurrence of x. Moreover
if we assume the interpretations for Rop it will be equivalent to the old formula. That is
w, i |= ψ(x) if and only if w |= Qy φ̂(x) provided we interpret R<(z) = > ⇔ i < z,
R>(z) = > ⇔ i > z and R=(z) = > ⇔ i = z.
Case 1, Q = ∃: Since φ~v(y) is a formula with one free variable and quantifier depth < k,
we can apply the inductive hypothesis to get an LTLgrp formula γ with new propositions
r<, r>, r=. We now write β = Pγ ∨ γ ∨ Fγ. From Corollary 4.2.14 it follows that β can be
separated into a boolean combination of pure past, pure present and pure future formulas.
Finally in all the pure past formulas we replace r<, r>, r= with >,⊥,⊥ respectively. Sim-
ilarly one can replace all the rop formulae with >,⊥ in the pure future, and pure present
formulae.
Case 2, Q = Qg

G: Let ψ~v = Qg
Gy 〈φ~v1(y), . . . , φ

~v
k(y)〉. Since φ~vi (y)s are formulas with

one free variable and quantifier depth < k, we can apply the inductive hypothesis to get
LTLgrp formulas φis with new propositions r<, r>, r=.
Let us denote by Φ = 〈φ1, ..., φk〉. Then we can write β =

∨
i, j,l GP

gi
Φ ∧ Γl ∧GF

g j
Φ, such

that gi.gl.g j = g.
From Corollary 4.2.14 β can be separated into a boolean combination of pure past, pure
present and pure future formulas. Finally in all the pure past formulas we replace r<, r>, r=
with >,⊥,⊥ respectively. Similarly one can replace all the rop formulae with >,⊥ in the
pure future, and pure present formulae.
So we have shown that the formula ψ(x) has an equivalent LTLgrp formula. �

38

4.3. UTL AND TWO VARIABLE FRAGMENT OF FO[<]

Lemma 4.2.15 along with Theorem 4.2.12 gives us that

Theorem 4.2.16. LTLgrp is expressively complete for FOgrp[<]

As a corollary we get

Corollary 4.2.17. Every FOgrp[<] (FOmod[<]) formula with one free variable has an
equivalent formula using three variables.

Proof. Let φ(x) be an FOgrp[<] (FOmod[<]) formula. By Theorem 4.2.16 we know
that there exists an equivalent LTLgrp (LTLmod) formula ψ. We now inductively built an
FOgrp[<] (FOmod[<]) formula from ψ as follows. The translation, t : LTLgrp×{x, y, z} →
FOgrp[<] is inductively given. Let tx(α), ty(α), tz(α) denotes t(α, x), t(α, y), t(α, z)
respectively. For a formula α we give the translation tx by the Table 2. Clearly this

LTLgrp FOgrp[<]
p P(x)
α∨ β tx(α) ∨ tx(β)
¬α ¬tx(α(x))
αŬβ ∃y (y > x) ∧ ty(β(y)) ∧ ∀z (x < z < y)⇒ tz(α(z))
αS̆β ∃y (y < x) ∧ ty(β(y)) ∧ ∀z (y < z < x)⇒ tz(α(z))
GF

g 〈φ1, ..., φk〉 Qg
Gy 〈(x < y) ∧ ty(φ1(y)), . . . , (x < y) ∧ ty(φk(y))〉

GP
g 〈φ1, ..., φk〉 Qg

Gy 〈(x > y) ∧ ty(φ1(y)), . . . , (x > y) ∧ ty(φk(y))〉

Table 2: Translation from LTLgrp formula to FOgrp[<] formula.

translation uses only three variables and hence we get an equivalent FOgrp[<] (FOmod[<])
formula in three variables. �

Note that we can give a similar proof for the following claims.

Theorem 4.2.18. Let G be a finite group. Then the following holds.

• LTLgrp(G) has separation property iff it is expressively complete for FOgrp(G)[<].

• LTLgrp(G) is expressively complete for FOgrp(G)[<].

• Every FOgrp(G) formula with one free variable has an equivalent formula using
three variables.

4.3 utl and two variable fragment of fo[<]

Here we show that tl[F,P,grp] is expressively complete for the two variable logic frag-
ment of FOgrp[<], (written as FO2grp[<]).

39

4.3. UTL AND TWO VARIABLE FRAGMENT OF FO[<]

Theorem 4.3.1. tl[F,P,grp] is expressively complete for FO2grp[<].

Proof. The translation is recursive. For the atomic formulas, boolean combinations and
existential formulas we would refer the readers to follow the proof by Etessami et al
[EVW02]. We give here the translation for the group quantifier (A similar translation can
be given for the modulo quantifiers). Let

φ(x) := Qg
Gy 〈φ1(x, y), . . . , φk(x, y)〉

Each of the φ j(x, y), for j ≤ k can be rewritten as

φ j(x, y) := τ j(γ j
1(x, y), ..., γ j

r(x, y),α j
1(x), ...,α j

s(x), β j
1(y), ..., β j

t (y))

Here τ js are boolean propositional formula. γ j
i s are order formulas of the form x < y, x =

y, x > y. α j
i s and β j

i s are formulas whose quantifier depth is less than the quantifier depth
of φ(x). Moreover α j

i s and β j
i s are of type atomic or existential or group quantified. We

first take out the α j
i s outside the group quantifier. For a vector ~v = (v1, . . . , vsk) ∈ {0, 1}sk

we define

ψ
j
~v(x, y) = τ j(γ j

1(x, y), ..., γ j
r(x, y), v j,1, ..., v j,s, β

j
1(y), ..., β j

t (y))

Let ψg for a g ∈ G be Qg
Gy 〈ψ1

~v(x, y), . . . ,ψk
~v(x, y)〉. Then we can rewrite φ as:

φ(x) :=
∨

v∈{0,1}ks

(
∧

j≤k,i<s

α
j
i (x)⇔ v j,i) ∧ ψ

g(x)

Observe that the γ j
i s are order formulas. Let Γ = {x < y, x = y, x > y}, be the set of all

order relations between x and y. For any order relation, o ∈ Γ, γ j
i s will be evaluated to

{T , F}. Let ψo
g be the formula got by replacing γ j

i with T /F in ψg(x) depending on the
order o. Observe that x does not appear free in ψo

g. Thus we get

φ(x) :=
∨

v∈{0,1}ks

(
∧

j≤k,i<s

α
j
i (x)⇔ v j,i) ∧

∨
g1g2g3=g

ψ
y<x
g1 ∧ ψ

x=y
g2 ∧ ψ

y>x
g3

Since formulas ψo
g do not contain free variables, and since βis have quantifier depth less

than the quantifier depth of φ(x), equivalent tl[F,P,grp] formulas exists. Formulas α j
i (x)

have equivalent tl[F,P,grp] formulas, since their quantifier depths are less than the quan-
tifier depth of φ(x). Hence we get an tl[F,P,grp] formula equivalent to φ.

�

By following the above arguments one can also show.

Theorem 4.3.2. tl[F,P,X,Y,grp] is expressively complete for FO2grp[<, succ].

40

4.4. DISCUSSION

4.4 discussion

In this chapter we saw that the counting versions of LTL are expressively equivalent to the
counting versions of FO[<], namely LTLmod is expressively as powerful as FOmod[<].
Infact these results can be extended to show that LTLgrp can express all languages ex-
pressible in FOgrp[<]. We could also show that LTLmod (or even LTLgrp) satisfies the
separation property, that is any formula in LTLmod (LTLgrp) is equivalent to a formula
which is a boolean combination of pure future, pure past and present formulas. This sepa-
ration property also shows that any LTLgrp formula is initially equivalent to a pure future
formula.

The significance of the above equivalence result is as follows. We know that FOgrp[<]
can express any regular language. Thus, now we can write temporal logic formulas which
can express any regular language property. This coupled with our Pspace algorithm in the
next chapter can be of use in verification purposes.

Baziramwabo, McKenzie and Thérien [BMT99] had given an algebraic characterization
for LTLgrp. It then follows, from the algebraic characterization of FOgrp[<], that LTLgrp
and FOgrp[<] define the same set of languages. The following Figure 8 puts our contri-
bution in perspective.

Monoids

FOgrp[<]

LTLgrp

[BMT99]
[Str94]

Figure 8: Equivalence of LTL and FO[<] in the presence of group quantifiers. The arrows
denote language equivalence. The double arrow is our contribution

We also saw that the two variable fragment of first order logic, FO2grp[<, succ] also has
an equivalent temporal logic fragment, UTL extended with group operators, which is
tl[F,P,X,Y,grp]. The language equivalence of these various fragments of LTLgrp and
FOgrp[<] are captured in Table 3.

41

4.4. DISCUSSION

Temporal logic First order logic
LTLgrp FOgrp[<]
LTLgrp(G) FOgrp(G)[<]
tl[F, P, grp] FO2grp[<]
tl[F, P, X, Y, grp] FO2grp[<, succ]
tl[F, P, grp(G), len] FO2grp(G)[<,≡]
tl[F, P, X, Y, grp(G), len] FO2grp(G)[<, succ,≡]
tl[F, P,mod] FO2mod[<]
tl[F, P, X, Y,mod] FO2mod[<, succ]
tl[F, P,mod(q), len] FO2mod(q)[<,≡]
tl[F, P, X, Y,mod(q), len] FO2mod(q)[<, succ,≡]
tl[F, P, len] FO2[<,≡]
tl[F, P, X, Y, len] FO2[<, succ,≡]

Table 3: Expressive power of various fragments of LTLgrp

42

5

LT L G R P S AT I S F I A B I L I T Y

5.1 introduction

In this chapter we show that satisfiability of LTLgrp is in Pspace even when using the suc-
cinct notation (ie. binary notation to represent modulo counting and symmetric groups for
the group operation). Unlike Serre [Ser04], we do not use alternating automata but ordi-
nary NFA and the standard “formula automaton” construction in our decision procedure.
Next we give a corresponding lower bound. Our second result shows that satisfiability of
tl[F,mod(2)] is Pspace-hard. Since tl[F] is Np-complete, this shows that modulo counting
is powerful.

We then look at a weaker logic and show that the satisfiability problem of the logic
tl[F,P,len], is in ΣP

3 , the third level of the polynomial-time hierarchy, again irrespective
of whether we use unary or binary notation. We also give a corresponding lower bound
for the logic tl[F,len].

Finally we look at satisfiability of the logic tl[dur], the logic where there are no temporal
logic modalities other than one which can count propositions modulo a number. We show
that satisfiability of this logic is Np-complete.

Table 4 gives a summary of the results of this chapter. Note that in the table the lower
bound results carry over from top to bottom and from left to right, whereas the upper
bound results carry over from right to left and from bottom to top.

tl [] [len] [dur] [mod] [grp]
[] Np-hard [Coo71] Np-c Np ? ?
[F] Np[ON80] ΣP

3 -complete Pspace-hard Pspace-c Pspace-c
[F, X] Pspace-hard [SC85] Pspace-c Pspace-c Pspace-c Pspace-c
[F, X, U] Pspace[Pnu77c] Pspace-c Pspace-c Pspace-c Pspace

Table 4: Upper and lower bound results for satisfiability of various temporal logics. Ex-
cept for those marked with ? the satisfiability for the rest of the logics are fully identified.
The entries which are in bold are the results of this chapter.

43

5.2. MODULO COUNTING

5.2 modulo counting

5.2.1 A Pspace upper bound

Our first main theorem shows that the upper bound for LTL satisfiability can be extended
to include the modulo and group counting computations, even when specified in succinct
notation.

Theorem 5.2.1. If an LTLgrpbinformula α0 is satisfiable then there exists a satisfying
model of size exponential in α0

Proof. The Fischer-Ladner closure of a formula α0 [FL79], denoted by CL(α0), is the
least ∆ such that

1. α0 ∈ ∆.

2. If α1 ∨ α2 ∈ ∆ then α1,α2 ∈ ∆.

3. ¬α1 ∈ ∆ iff α1 ∈ ∆

4. If Xα ∈ ∆ then α ∈ ∆

5. If α1Uα2 ∈ ∆ then α1,α2 ∈ ∆

6. The closure of modP
r,qα includes α and also has modP

s,qα for every s from 0 to q − 1.
(Notice that only one of these can be true in a state.)

7. The closure of modF
r,qα includes α and also has modF

s,qα for every s from 0 to q − 1.

8. The closure of GF
h 〈α1, . . . ,αk〉 includes α1, . . . ,αk and also contains the formulae

GF
h′〈α1, . . . ,αk〉 for every element h′ ∈ G. (Only one of these can be true at a state.)

9. The closure of GP
h 〈α1, . . . ,αk〉 includes α1, . . . ,αk and also contains the formulae

GP
h′〈α1, . . . ,αk〉 for every element h′ ∈ G.

Observe that if α0 ∈ LTLgrpbin, CL(α0) can be exponential in the size of α0, unlike the
usual linear size for LTL, since the constants r, q and h are written in succinct notation. A
state of the tableau or formula automaton which we will construct is a maximal consistent
subset of formulae from the closure of α0. Let modP

r,qα be a formula in the Fischer-Ladner
closure. However, only one of the potentially exponentially many formulae of the form
modP

s,qα, 0 ≤ s < q can consistently hold in a state. Similarly only one of the formulae of
the form modF

s,qα, 0 ≤ s < q or of the form GF
h 〈α1, . . . ,αk〉, can consistently hold. So a

state is also exponential in the size of α0. Here is a formal argument, using induction on
structure of α, that the set of states of the automaton Mα is 2O(|α|). We denote by |q| and
|G| for the input size (binary notation) and by S α the number of states in Mα.

44

5.2. MODULO COUNTING

1. α = p ∈ P. This is trivial.

2. α = β∨ γ. S α = S β × S γ ≤ 2O(|β|+|γ|) (By induction hypothesis)

3. α = ¬β. This is just change of final states in Mβ.

4. α = βUγ. S α = S β × S γ ≤ 2O(|β|+|γ|)

5. α = modP
r,qβ Since any atom can have only one formula of this kind, S α = S β × q ≤

2O(|β|+|q|)

6. α = modF
r,qβ. This is similar to the case above.

7. α = GP
h 〈α1, . . . ,αk〉. Again any atom can have only one formula of this kind,

S α = S α1 × · · · × S αk × card(G) ≤ 2O(|α1|+···+|αk |+|G|).

8. α = GF
h 〈α1, . . . ,αk〉. This is again similar to the case above.

�

Corollary 5.2.2. LTLgrpbin satisfiability is in Pspace.

Proof. Since the formula automaton has exponentially many states, each state as well as
the transition relation can be represented in polynomial space. Now we can guess and
verify an accepting path in Pspace [Eme90]. �

We now look at the model checking problem for the above logics.

Theorem 5.2.3. The model checking problem for LTLgrpbinis Pspacecomplete.

Proof. Let α0 be a formula in LTLgrpbinand M a Kripke structure. Theorem 5.2.1 shows
that for a formula ¬α0 there is an exponential size model M¬α0 which captures the lan-
guage defined by ¬α0. Verifying M |= α0 is equivalent to checking whether the inter-
section of the above automatas is non-empty. This can be done by a non-deterministic
machine which uses space logarithmic in the size of both the models. The lower bound
follows from the fact that model checking for LTL is Pspace-hard. �

5.2.2 Corresponding lower bound

Next we consider the logic tl[F,mod]. It can express properties which can be expressed
by LTL but not by tl[F], for example G(p ⇔ `P

1,2) expresses alternating occurrences of
p and ¬p. Our next result shows that the satisfiability problem for tl[F,mod], even with
unary notation, is Pspace-hard.

Theorem 5.2.4. The satisfiability problem for tl[F,mod(2)] is Pspace-hard, even with the
modulo formulae restricted to counting propositions,

45

5.2. MODULO COUNTING

Proof. Since the satisfiability problem for tl[X,F] is Pspace-hard [SC85], giving a satis-
fiability preserving polynomial translation from formulas in tl[X,F] to tl[F,mod(2)] will
give us the required result. It is sufficient to give a polynomial-sized translation of the
modality Xα. For each such formula, we introduce two new propositions pE

α and pO
α , and

enforce the constraints below. Let EvenPos abbreviate `P
0,2 and OddPos abbreviate `P

1,2.

1. Consider an even position (a position where EvenPos is true). At that position, we
ensure α is true if and only if pE

α is true. Similarly at an odd position, α is true if
and only if pO

α is true. The following formula can ensure this.

G
(
α⇔

(
(EvenPos⇒ pE

α) ∧ (OddPos⇒ pO
α)

))
2. Let m be some even position. Then what we want is that the number of occurrences

of pE
α from the beginning of the word to m should be even. Similarly for an odd

position, we want the number of occurrences of pO
α from the beginning to it is odd.

The following formula takes care of this condition.

G
(
(EvenPos⇒ modP

0,2 pE
α) ∧ (OddPos⇒ modP

0,2 pO
α)

)
3. Then all occurrences of the formula Xα are replaced by the following formula.

(EvenPos⇒ pO
α) ∧ (OddPos⇒ pE

α).

Let us analyze what these conditions enforce. We claim the following.

Claim 5.2.5. For an odd z, we have

w, z |= Xα⇔ w, z |= pE
α

Similarly, for an even z, we have

w, z |= Xα⇔ w, z |= pO
α

Proof. Consider a word w which satisfies the above two conditions. For a point z ≤ |w|
and a proposition p, let C(z, p) be the number of occurrences of p at points ≤ z. That is

C(z, p) = |{i ≤ z | w, i |= p}|

Let us first look at the proposition pE
α . From condition (2), we know that the count

C(z, pE
α) is even at all even points z. Let z > 2 be an even point where α is true. By (2), the

counts C(z, pE
α) and C(z − 2, pE

α) should be even. But from (1) we have that w, z |= pE
α ,

and hence C(z, pE
α) > C(z− 2, pE

α). Since both these counts are even, the word w is forced
to satisfy the condition, w, z − 1 |= pE

α . Let us now look at the other direction. Let us as-
sume that for an even z, we have w, z− 1 |= pE

α . From (2) we have that the counts C(z, pE
α)

and C(z − 2, pE
α) should be even and from our assumption C(z, pE

α) > C(z − 2, pE
α) and

hence w, z |= pE
α . From (1) it then follows that w, z |= α.

So at an odd position, Xα holds precisely when pE
α holds. Symmetrically, at an even

position, Xα holds if and only if pO
α holds. �

46

5.3. LENGTH MODULO COUNTING

From the above claim it follows that condition (3) is necessary and sufficient. Note that
Xα is replaced by a formula of size |α|+ c for a constant c. With one such translation for
every X modality, the reduction is linear. �

5.3 length modulo counting

We now consider the weaker logic tl[F,len] (Refer to Preliminaries chapter 2 for the
definition). So we can only count lengths rather than propositions, which was something
we needed in the Pspace-hardness proof in the previous section.

Note that the language (ab)∗ is in tl[F,len]. It is known [ON80, SC85, Sch02] that a
satisfiable formula in tl[F] has a polynomial sized model. Unfortunately

Proposition 5.3.1. tl[F,len] does not satisfy a polynomial model property.

Proof. Let pi be distinct primes (in unary notation) in the following formula:

F((`P
0,p1

) ∧ (`P
0,p2

) ∧ · · · ∧ (`P
0,pn

)).

Any model which satisfies this formula will be of length at least the product of the primes,
which is ≥ 2n. �

We show that the satisfiability problem of tl[F,len] is in ΣP
3 , the third level of the polynomial-

time hierarchy.

Let us first look at the sublogic tl[len]. We give a couple of technical lemmas concerning
the logic tl[len] which will be crucial to our arguments later. Observe that the truth of a
tl[len] formula in a word w at position i, does not depend on the letters at positions j , i.
That is

Lemma 5.3.2. Let α ∈tl[len] and w, i |= α. Then for all w′ such that w′[i] = w[i] we
have w′, i |= α.

Proof. We prove by induction on the structure of α. Clearly the claim holds for proposi-
tions and `P

r,q, `F
r,q since the states have the same set of propositions. It is also easy to note

that the claim is closed under conjunctions and negations. �

We now look at a non-trivial property of tl[len]. This property will be used later for our
upper bound result.

Lemma 5.3.3. Let α be a tl[len] formula. Then the following are equivalent.

1. ∀w ((|w| = n)⇒ ∃k ≤ n, (w, k) |= α)

2. (∃k ≤ n,∀w ((|w| = n)⇒ (w, k) |= α))

47

5.3. LENGTH MODULO COUNTING

Proof. (2⇒ 1) : This is trivial.
(1 ⇒ 2) : Assume (1) is true but (2) is false. Let S = {w | |w| = n}. Pick a w1 ∈ S .
By the hypothesis ∃i ≤ n, (w1, i) |= α and since the claim is false, there exists some
w2 ∈ S such that (w2, i) 6|= α. If this is not true then we have a witness i, such that
∀w ∈ S (w, i) |= α. Let ui be the state at the ith location of w2. Replace the ith state in
w1 by ui without changing any other state in w1. Call this new word w3. Now by Lemma
5.3.2, (w3, i) 6|= α. Again by the hypothesis, ∃ j ≤ n, (w3, j) |= α. By the same argument
given above, ∃w4 such that (w4, j) 6|= α. We can replace the jth state of w3 by the the jth

state from w4 which makes the resultant word not satisfy α at the jth location. We continue
doing the above procedure for n steps. Since n is finite after some finite occurrence of the
above procedure, we will get a word v such that ∀k ≤ n, (v, k) 6|= α. But this implies the
hypothesis is wrong and hence a contradiction. �

The above Lemma shows that an algorithm to check the first condition, need only check
the second condition. The second condition can be easily verified by a ΣP

2 machine. We
are now going to use the above Lemma to solve the following problem.

Definition 5.3.4. (BlockS AT): Given a tl[len] formula α and two numbers m, n in binary,
the problem BlockS AT is to check whether there exists a model w of size m + n such that
(w, m) |= Gα.

Lemma 5.3.5. The problem BlockS AT is in ΠP
2 .

Proof. The algorithm takes as input a tl[len] formula α, along with two numbers m, n in
binary. Observe that since n is in binary we cannot guess the entire model. The algorithm
needs to check whether there exists a model w such that |w| = m + n and for all k, where
m ≤ k ≤ m + n, we have w, k |= α. Take the complement of this statement, which is for
all words w, where |w| = m + n, there exists a k, such that m ≤ k ≤ m + n and w, k |= ¬α.
That is ∀w, |w| = m + n ⇒ ∃k m ≤ k ≤ m + n, (w, k) |= ¬α. By the previous Lemma
5.3.3 we can check this condition by a ΣP

2 machine. Hence BlockS AT can be verified by
a ΠP

2 machine. �

5.3.1 Length modulo counting - Upper bound

We show that satisfiability of tl[F,len] can be checked in ΣP
3 , even in binary notation,

showing that this restriction does buy us something.

Note that ΣP
3 is a subset of Pspace, but it is not known whether this is a strict subset. Hence

for all practical purposes we require polynomial space in checking for satisfiability and
model checking.

Before proceeding into an algorithm, we need to introduce a few definitions. Let α be a
formula over a set of propositions P, S ubF(α) its set of future subformulae. That is

S ubF(α) = {Fβ | Fβ is a subformula of α}

48

5.3. LENGTH MODULO COUNTING

prd(α) the product over all elements of the set {n | (δ ≡ r mod n) is a subformula of α}.
Let w be a word model. We define witness index in w for α as (assume max ∅ = 1)

WI(w,α) = {max{ j | w, j |= Fβ} | Fβ ∈ S ubF(α)} ∪ {1}

This is the set of all points j, which satisfy Fβ for a subformula Fβ of α and such that there
is no point in the strict future of j which satisfy Fβ. A state at a witness index is called a
witness state. For a subformula Fβ of α, we say β is witnessed at i if i is the future most
point which satisfy β. In other words, i = max{ j | w, j |= Fβ}. Call all states other than
witness states of w as pad states of w for α.

We define a model w to be nice for α if between any two consecutive witness states of w
(for α) there are at most prd(α) number of pad states. We claim that if α is satisfiable
then it is satisfiable in a nice model.

Theorem 5.3.6. Let α be a satisfiable formula in tl[F, len]. Then there exists a nice model
w which satisfy α.

Proof. Since α is satisfiable, there exists a word w such that w, 1 |= α. Let prd(α) = q
and let i, j ∈ WI(w,α) such that j − i − 1 > q and ∀i < k < j k < WI(w,α). Let us also
assume that β1, β2 are witnessed at i and j respectively. Let w′ be the first r positions in
the subword w[i + 1, j] where j − i − 1 ≡ r(mod q) and r < q. We now construct a new
model ŵ = w[1, i]w′w[j, |w|]. Consider the mapping

ν(k) =
{

k if k ≤ i + r
k + j − i − r − 1 otherwise

We now show for a subformula β of α that ŵ, k |= β ⇔ w, ν(k) |= β for all k ≤ |ŵ|. The
truth at a state depends only on the propositions at that state, the truth of future formulas
and the truth of the length formulas. The claim now follows, since ŵ[k] = w[ν(k)] and
k ≡ ν(k)(mod q) and the witness states are preserved. That is WI(ŵ,α) = {ν(k) | k ∈
WI(w,α)}. �

Thus, a normal model of α will be of size less than or equal to |S ubF(α)| × prd(α),
which is of size exponential in α. So guessing the normal model is too expensive, but we
can guess the witness states (the indices and propositions true at these states), which are
polynomial, verify whether the F requirements are satisfied there, and verify if there are
enough pad states to fill the gap between the witness states. We will argue that we can use
a Π2 oracle to verify the latter part. The proof is given below.

Theorem 5.3.7. Satisfiability of tl[F, len] is in ΣP
3 , even if the syntax uses binary notation.

Proof. Let α be satisfiable. We guess the following and use it to verify whether there
exists a normal word satisfying these guesses.

1. Guess k positions, 1 = l0 < l1 < l2 < ... < lk, where k ≤ |S ubF(α)| and ∀i, (li+1 −

li − 1) ≤ prd(α). We have to verify that these are the indices where the future
formulas are witnessed.

49

5.3. LENGTH MODULO COUNTING

2. Guess k + 1 sets of propositions a1, . . . , ak. These form the witness states.

3. For each index j ∈ [k + 1], guess the set B j of all β such that β is witnessed at l j.
Let B = {β | Fβ ∈ S ubF(α)}. Then

B j = {β | β ∈ B and β is witnessed at l j}

Note that ∪ j≤kB j can be a proper subset of B.

We need to verify whether there exists a normal word, w with satisfies the above properties
and finally whether it satisfies α. So as per our guess, our word w should look as follows.

w = a0w1a1w2 . . .wk−1ak

where the length of w1, w2, . . . , wk are such that, w[li] = ai for all i ≥ 0. Thus we need to
verify that

w, li |=
∧
β∈Bi

Fβ∧
i−1∧
j=0

∧
β∈B j

¬β (1)

Moreover for all i where 1 ≤ i < k, we have that |wi| ≤ q and no point in wi is a witness
state for any formula. Therefore wi satisfies the following:

w, li + 1 |= G
i∧

j=0

∧
β∈B j

¬β (2)

We verify these by iterating through all i ≤ k in a descending order. As the base case, we
verify Condition (1) for i = k. All modalities can be stripped away and verified against
the propositions true at this state and the location of the state. We give the following
mapping ν : S ubF(α)→ {>,⊥} such that

ν(Fβ) =
{
> if β ∈ Bk
⊥ otherwise

That is ν maps all future formulas guessed to be true at ak to be true and the rest to be
f alse. Using ν, we give a new mapping, ν̂ : B → tl[len] as follows. Let γ ∈ B. We
now replace all future formula in γ by {>,⊥} depending on the ν function. That is, if
Fβ ∈ S ubF(γ) then replace Fβ in γ by ν(Fβ). Now we verify if for all γ ∈ B, whether
w, lk |= ν̂(γ) or not. Thus we have verified the guesses at i = k. Now let us look at an
i < k. From our iteration, we could assume that for all j > i we have that the guesses
are correct. Let us first look at verifying Condition (2). We give the following mapping
ν : S ubF(α)→ {>,⊥} such that

ν(Fβ) =
{
> if β ∈ ∪ j>iB j
⊥ otherwise

Again, we give a new mapping, ν̂ : B → tl[len] as was given above. That is by
replacing all subformulas by > or ⊥ depending on whether ν(Fβ) is > or not. Let

50

5.3. LENGTH MODULO COUNTING

γ = G
∧i

j=0
∧
β∈B j ¬ν̂(β), got by replacing β by ν(β) in the formula in Condition (2).

We need to check whether there exists a word, wi+1 of length (li+1 − li + 1) such that
w[1, li]wi+1, li + 1 |= γ. From Lemma 5.3.5, we see that this is the BlockS AT prop-
erty, checkable in ΠP

2 . We claim that this is equivalent to checking whether w, li + 1 |=
G

∧i
j=0

∧
β∈B j ¬β. Let us assume not. That is, let β be the smallest formula such that

w, li + 1 |= Fβ but w, li + 1 6|= ν̂(β). But this is impossible, since by induction hy-
pothesis w, li+1 6|= Fβ and by the ΠP

2 machine we know that for all t ∈ N such that
li < t ≤ li+1 w, t 6|= β, since w, t 6|= ν̂(β).

We now need to verify Condition (1). The argument for this is similar to that for i = k.

And finally we also need to check that.

w, 1 |= α (3)

This is again checkable by replacing all subformulas Fβ ∈ S ubF(α) by > or ⊥ depending
on whether there exists some j such that β ∈ B j or not. This gives us a formula in tl[len],
which can be checked easily.

The algorithm we have described is an Np procedure which uses a ΠP
2 oracle and hence

is in ΣP
3 . �

5.3.2 Length modulo counting - Lower bound

In this section we show that the satisfiability problem for tl[F, len] is ΣP
3 -hard, even if

we use unary notation and finite word models. We denote by β[p/φ] the formula got by
replacing all occurrences of the proposition p by φ in the formula β.

Let QBF3 be the set of all quantified boolean formulas which starts with an existential
block of quantifiers followed by a universal block of quantifiers which are then followed
by an existential block of quantifiers (that is there are three quantified alternation) Check-
ing whether a QBF3 formula is true is ΣP

3 -complete. We reduce from evaluation of QBF3
formulae to satisfiability of our logic.

Theorem 5.3.8. Satisfiability for tl[F, len] is hard for ΣP
3 , even if unary notation is used

for the syntax.

Proof. Let us take a formula β with three levels of alternation and which starts with an
existential block.

β = ∃x1, ..., xk∀y1, ..., yl∃z1, ..., zmB(x1, ..., xk, y1, ..., yl, z1, ..., zm)

We now give a satisfiability-preserving tlun[F,len] formula β̂ such that β is in ΣP
3 -SAT iff

∃w, (w, 1) |= β̂.

51

5.3. LENGTH MODULO COUNTING

Take the first l prime numbers p1, ..., pl. Replace the y js by `P
0,p j

. We give the formula β̂

below. It is a formula over the x and z propositions, got by replacing y j by `P
0,p j

, for all
j ≤ l.

β̂ = G(B[y j/`P
0,p j

]) ∧ F(∧l
j=1`

P
0,p j

) ∧
k∧

i=1

(Gxi ∨G¬xi)

Thanks to the prime number theorem we do not have to search too far (By the prime
number theorem, asymptotically there are l primes less than l log l and hence finding them
can be done in polynomial time.) for the primes, and primality testing can be done in
polynomial time.

We now show that the following claim is true.

β is satisfiable ⇔ β̂ is satisfiable

For bit vectors v ∈ {0, 1}k, s ∈ {0, 1}l let us denote by βv
s the formula got by removing the

outermost existential and universal quantifier in β and replacing xi by v(xi), for all i ∈ [k]
and y j by s(y j), for all j ∈ [l], in β. That is

βv
s = β[xi/v(xi)][y j/s(y j)]

Also for a number j ∈ N, we denote by ĵ the vector (j mod p1 = 0, j mod p2 =
0, ..., j mod pl = 0).

(⇒) : Since β is satisfiable, there exists a v ∈ {0, 1}k such that for all s ∈ {0, 1}l the
formula βv

s is satisfiable. Hence for every such s, there is a vector Zs ∈ {0, 1}m such that
βv

s[zi/Zs(zi)] is valid.

We now construct a word w such that w, 1 |= β̂. Let w = a1 . . . an have the following
three properties.

• For every i ≤ m and for every j ≤ n, zi ∈ a j if and only if Z ĵ(zi) = 1.

• n =
∏l

j=1 p j.

• For every i ≤ k and for every j ≤ n we set xi ∈ a j if and only if v(xi) = 1.

Note that the above three conditions satisfies the first, second and third subformula of β̂
respectively. Hence w, 1 |= β̂.

(⇐) : Let w = a1 . . . an be such that w, 1 |= β̂. Then n ≥
∏l

j=1 p j, since w satisfies
F(∧l

j=1`
P
0,p j

). Now consider vectors v ∈ {0, 1}k and for all vectors s ∈ {0, 1}l the vector
Zs ∈ {0, 1}m such that

• For all i ≤ k, v(xi) = 1⇔ xi ∈ a1.

52

5.4. SATISFIABILITY OF TL[DUR] LOGIC

• For every s ∈ {0, 1}l we find a number j ≤ n such that ĵ = s. Such a j exists since
n is large enough. Then consider the vector Zs such that Z s(zi) = 1 ⇔ zi ∈ a j for
every i ≤ m.

To show that β is satisfiable, we need to give an assignment to the xis such that for all
assignments to the y js, there is an assignment to the zrs which evaluates to true. These are
given by the assignments v and Zss.

�

5.4 satisfiability of tl[dur] logic

Let us first recall the definition of tl[dur] logic from the Preliminaries (Chapter 2). This is
a past logic closed under boolean combination and which can count propositions modulo
a number. Let α ∈ tl[dur] over the propositions P. Observe that since α is a past logic,
we want to check whether there exist some word w ∈ (2P)∗ such that w, |w| |= α. Our
idea is as follows. We first list down all the MOD formulas in α. Let

MOD(α) = {modP
r,q pi such that it is a subformula of α}

Let q = lcm{qi | mod
P
r,qi

p ∈ MOD(α)}. Now we guess the number of occurrences of each
of the pis in the word (without the last state). Let these be n1, ..., nl. The problem is now
to check if there exists a word where each of the pis occur ni (mod q) times and whether
such a word can be extended by a state to satisfy α. Clearly the second condition has a
short proof (a valuation) and hence can be verified easily. But what about the first. Below
we give a small certificate for the first condition too. We prove a stronger claim below
in the problem COUNTS AT (PROP). We claim that this problem is in Np and hence

COUNTS AT (PROP):

Input: Set of Propositions, P = {α1, . . . ,αk} and numbers q, n1, ..., nk ∈ N (numbers
given in binary)

Question: There exists a w ∈ (2P)∗ such that ∀i ≤ k : |{ j | (w, j) |= αi}| ≡ ni (mod q)?
Complexity: NP-Complete

complete for Np.
See that the size of w can be atmost exponential in the size of the input, since it can be
atmost of size q, which is exponential in the size of the input (q is written in binary).
Hence guessing w and verifying it wont give an Np algorithm. Let the different states
(valuations) of w be V = {v1, .., vn}. For a set of proposition P and valuations V we
define a k × n matrix AP,V such that k = |P| and n = |V|.

AP,V(i, j) =

1 if (v j |= αi), v j ∈ V,αi ∈ P

0 otherwise

53

5.4. SATISFIABILITY OF TL[DUR] LOGIC

Let ŵ be the parikh vector of the word w (this vector counts the number of times each
different valuation appears in w). See that (A ŵ) will give the number of positions in w
which satisfies the αis (We drop the subscript from now on). Call the vector (n1, ..., nk)
by ~b. In Equation 4 we give an example matrix A and a vector ŵ.

α1
α2
...
...
αk

~v1 ~v2 ~.. ~.. ~vn
1
0
...
1
0

0
1
...
0
1

1
0
...
1
0

~̂w
3
5
...
...
1

≡q

~b
n1
n2
...
...
nk

(4)

Therefore what COUNTS AT (PROP) ask is, whether there exists a w such that

(A ŵ)mod q = b

Now we show a result from linear algebra, which is useful in proving the Np upper bound
for COUNTS AT (PROP). Consider a k× n integer matrix, A where n > k. The following
operations on a matrix are called elementary column operations: exchanging two columns,
multiplying a column by −1, and adding an integral multiple of one column to another
column. We now claim the following.

Lemma 5.4.1. [Sch98] Any k × n integer matrix A (where n > k) can be transformed into
a matrix with n − k zero columns (0 vector) by applying a series of elementary column
operations.

Proof. By induction on the number of rows, k. See that if number of rows is 1, the claim
is true. Now Consider a matrix with k rows. Assume by our induction hypothesis we are

in a position
[

B 0
C D

]
, where B is a square matrix. With elementary column operations

we can modify D such that its first row(d1, ..., dl) is non-negative and also such that the∑
di is as small as possible. We assume d1 ≥ d2 ≥ ... ≥ dl (if not interchange columns).

We claim that d2 = 0. Assume not. Then we can subtract this column with the first
column(which contains d1) making the

∑
di even smaller, a contradiction. Hence it now

follows that d2 = d3 = ... = dk = 0 and we have solved the problem for a larger matrix
(the matrix B with this new row till d1). Repeating this procedure we can convert the full
matrix into the form we wanted. �

We now prove a small model property for the problem COUNTS AT (PROP). We can
also view this as a polynomial sized certificate, which we can verify in polynomial time
making the problem in Np.

Lemma 5.4.2. Let P be a set of Propositions of size k. Then we claim
〈P, q, n1, ..., nk〉 ∈ COUNTS AT (PROP) iff
∃V ⊂ 2P, where |V| = k and ∃~v ∈ {0, ..., q}k such that (AP,V ~v)mod q = b

54

5.5. DISCUSSION

Proof. (⇐) : This is trivial.
(⇒) : Let there exists a w which satisfies the conditions of the problem. Therefore there
exists a matrix, B as given in Equation 4. See that (Bŵ)mod q = b. Unfortunately the
matrix might have more columns than k. From Lemma 5.4.1. it follows that there exists k
columns(called basis vectors) such that any column in B can be represented by an integral
combination of these basis vectors. Call this new matrix A formed by taking these k
basis vectors. Also there exists a parikh vector say v such that A v ≡q Bŵ ≡q b. If any
component of v is greater than q, then just take modulo q of that number. This proves the
claim. �

Using the above theorem, it is easy to give an Np upper bound for COUNTS AT (PROP).

Theorem 5.4.3. COUNTS AT (PROP) is Np-complete.

Proof. Lemma 5.4.2 gives us a polynomial sized certificate to be verified. We guess the
matrix A, and the vector v and we check whether A v ≡q b. The latter verification can be
done in polynomial time. Lower bound is because boolean satisfiability is in NP. �

It is now easy to show that satisfiability of tl[dur] is in Np. The proof comes from the
arguments we made above showing COUNTS AT (PROP) ∈ Np.

Theorem 5.4.4. Satisfiability of tl[dur] is Np-complete.

5.5 discussion

In this chapter we looked at satisfiability and model checking problems for various exten-
sions of LTL. The extensions we looked at were all under the regular framework. We had
LTL extended with modulo counting and group extensions. The previous chapter 4 looked
at the expressiveness of these logics. This chapter shows that these extended logics can
very well be used for verification purposes, since they have the space complexity exactly
like LTL. This seems to have escaped the notice of verification researchers until now.

An interesting question to ask is: Are there other families of automata, where a “standard”
enumeration of their states and transitions can be represented in logarithmic notation, and
for which the Pspace bound will continue to hold? Identifying these families will help us
in using them for verification purposes.

A patent weakness of our approach is that LTLgrp specifications are far from perspicuous,
but we look to demonstrate an idea, and it will take specification examples from practice
to provide useful patterns for the more expressive logic.

We also observed that when LTL is extended with modulo counting, it does not matter if
the specification of the moduli is in succinct notation or not. That is even for a very weak
extension of LTL, that is tl[F,mod(2)] we get Pspace-hardness. More generally this holds
for computation within a finite symmetric group.

55

5.5. DISCUSSION

Another point to note is that our Pspace hardness proof required introducing polynomial
number of propositions. Will the lower bound continue to hold in the case of constant
number of propositions? We believe not.

Open Problem 5.5.1. A tight upper and lower bound for tl[F,mod(2)] with constant
number of propositions is not known. Currently we have an upper bound of Pspace and
an Np lower bound.

If this is the case then it contrasts with tl[X,F], since it is Pspace-hard for constant number
of propositions. We bring to your notice a result by Weis and Immerman [WI09], where
it was shown that the satisfiability of FO2[<] is Nexptime-complete but with constant
number of propositions it is Np-complete.

Consider the logic with only the modulo counting operator but no temporal logic modality.
We do not know the complexity of satisfiability of this logic. The logic tl[dur], looks at
the special case when modulo counting is allowed only over propositions.

Open Problem 5.5.2. The complexity of tl[mod] is not known. We know that it lies in
between Np and Pspace.

56

6

F O [<] S AT I S F I A B I L I T Y

6.1 introduction

Since satisfiability of FO[<] itself is non-elementary over words, it is of interest to study
the counting quantifiers in a weaker framework, such as the two-variable framework.

The first contribution of this chapter is to show that this upper bound extends to the slightly
stronger FO2[<, succ,≡], and that the lower bound holds even for FO2[≡] (FO2 with only
the modulo predicates or FO2[≡], that is no less than or successor relation) for a constant
alphabet size.

The second contribution of this chapter is to show that the satisfiability of FO2mod[<
, succ] is in Expspace. We also show a corresponding lower bound for the weaker logic
FO2mod(2)[<,≡]. Our upper bound results assume that the integers in modulo quantifiers
and modulo predicates are in binary, whereas our lower bound results assume they are in
unary. Thus the complexity does not depend on the representation of integers. We also
extend our results to show that the same upper bound holds for computation over finite
groups, which is the present decidability frontier. Again our upper bound assume succinct
descriptions of groups using generators rather than group elements.

6.2 upper bounds via linear temporal logic

In this section we show the satisfiability of modulo counting logics. It is easy to observe
that there exists a linear time translation from tl[F,P,X,Y,grp] to FO2grp[<, succ]. There
is an exponential time translation in the reverse direction. We restate Theorem 4.3.1 found
in Chapter 5 below.

Lemma 6.2.1. For an FO2mod[<, succ] (FO2[<, succ,≡], respectively) formula α of
quantifier depth d and size n there exists a tl[X,Y,F,P,mod] (tl[X,Y,F,P,len], resp.) for-
mula α′ of modality depth 2d and size at most O(2n), such that α and α′ accept the same
set of word models. Moreover this translation can be done in exponential time.

57

6.2. UPPER BOUNDS VIA LINEAR TEMPORAL LOGIC

Combining Lemma 6.2.1 with Corollary 5.2.2 that tl[X,Y,F,P,mod] satisfiability is in
Pspace we get that:

Theorem 6.2.2. FO2mod[<, succ] satisfiability is in Expspace.

Proof. Given a sentence α ∈ FO2mod[<, succ] then using Lemma 6.2.1 we can convert
it to an tl[X,Y,F,P,mod] formula of exponential size. Theorem 5.2.2 then gives us that
satisfiability is in Expspace. �

A similar result can be given for the extended logic FO2grp[<, succ] by combining Lemma
6.2.1 with Theorem 5.2.2 that tl[F,P,X,Y,grp] satisfiability is in Pspace.

Theorem 6.2.3. FO2grp[<, succ] satisfiability is in Expspace.

For FO2[<, succ,≡] we can do better. We next show that a satisfiable tl[X,Y,F,P,len]
formula α has a model which is polynomial in lcm(α) (where lcm(α) = lcm{q | x ≡q
r is a subformula in α}), but which is exponential in the modality depth and number of
propositions. Observe that the size of the formula is irrelevant for the model size.
The following definitions are borrowed from Etessami et al [EVW02]. They had defined
these for UTL. We extend them to tl[X,Y,F,P,len].

Definition 6.2.4. The depth of a formula α ∈ tl[X,Y,F,P,len] is (k, k′) if its {F, P} depth
is k and its {X, Y} depth is k′.

Definition 6.2.5. For a word w and a position i, the (k, k′)-type of i in w, denoted by
τ(k,k′)(w, i) is the set of all tl[X,Y,F,P,len] formulas of depth (k, k′) that hold in w at i.
That is

τ(k,k′)(w, i) = {φ | w, i |= φ, φ ∈ tl[X,Y,F,P,len], depth of φ is (k, k′)}

Let us denote by P the set of propositions and let p = |P|, be the number of propositions.

The following lemmas (Lemma 6.2.6 and 6.2.7) say that the question of satisfiability of
a formula in tl[X,Y,F,P,len], can be reduced to counting the number of distinct (k, k′)-
types possible in a word. Let T (k, k′) be the maximum number of distinct (k, k′)-types
possible in a word.

Let α be a tl[X,Y,F,P,len] formula over the alphabet P. Observe that if α is an UTL
formula we can use the Nexptime algorithm given in [EVW02] to check whether α is
satisfiable. Hence we assume that α is not an UTL formula and therefore lcm(α) is
defined and let it be equal to q. Our first aim is to understand when do two words at two
positions have the same (k, k′)-type.

Lemma 6.2.6. For two words w, w′ and positions i, i′, where 1 + k′ ≤ i ≤ |w| − k′ and
1 + k′ ≤ i′ ≤ |w′| − k′

τ(0,k′)(w, i) = τ(0,k′)(w
′, i′) iff w[i − k′, i + k′] = w′[i′ − k′, i′ + k′] and i ≡q i′

58

6.2. UPPER BOUNDS VIA LINEAR TEMPORAL LOGIC

Proof. A depth (0, k′) formula can only look at the position modulo q and the letters in
the positions at a distance of k′ to the left or right of the current position. �

The above lemma looked at the base case, when the {F, P} modalities are not present in
the formula. The following lemma captures the general case.

Lemma 6.2.7. For two words w, w′ and positions i, i′, where i ≤ |w| and i′ ≤ |w′|

τ(k+1,k′)(w, i) = τ(k+1,k′)(w
′, i′) iff

τ(0,k′)(w, i) = τ(0,k′)(w′, i′) and
{τ(k,k′)(w, j) | j < i} = {τ(k,k′)(w′, j) | j < i′} and
{τ(k,k′)(w, j) | j > i} = {τ(k,k′)(w′, j) | j > i′}

Proof. Every tl[X,Y,F,P,len] formula can be written in a “normal form”, where all the
X, Y modalities are pushed inside the {F, P}modalities. This does not change the depth of
the formula [EVW02].
(⇒) : Consider an α of the form Xφ such that α ∈ τ(0,k′)(w, i). Since the left hand side
is true, we have that α is also in τ(0,k′)(w′, i′). Similarly α < τ(0,k′)(w, i) implies that
α < τ(0,k′)(w′, i′). So let us consider an α of the form Fφ (a similar analysis can be given
for α = Pφ). Let φ ∈ τ(k,k′)(w, j), for a j > i. Then clearly we have w, j |= φ and
therefore w, i |= α. Since the left hand side is true, we get that w′, i′ |= α and hence
there exists a j′ > i′ such that w′, j′ |= φ and hence φ ∈ τ(k,k′)(w′, j′) holds. A similar
argument can be used to show that if φ < τ(k,k′)(w, j) implies φ < τ(k,k′)(w′, j′).
(⇐) : Let α be a formula in the normal form as stated above. Let α ∈ τ(k+1,k′)(w, i) such
that α ∈ τ(0,k′)(w, i). But then α ∈ τ(0,k′)(w′, i′). So let us assume that α is of the form
Fφ (the case when α = Pφ will be analogous). Then clearly there exists a j > i such that
w, j |= φ, which implies that φ ∈ τ(k,k′)(w, j). This (since the left hand side is assumed to
be true) implies that φ ∈ τ(k,k′)(w′, j′) for a j′ > i′. Hence the claim holds. �

We now show how to get a small model property for tl[X,Y,F,P,len]. The proof of the
following Lemma follows the proof of Lemma 3 in [EVW02].

Lemma 6.2.8. Let w = u1 . . . ui . . . ui′ . . . un be a word and i, i′ ≥ 1 such that τ(k,k′)(w, i) =
τ(k,k′)(w, i′) Let w′ = u1 . . . uiui′+1 . . . un. Then we have that

1. for all j ≤ i
(
τ(k,k′)(w, j) = τ(k,k′)(w′, j)

)
2. for all j ≥ i′

(
τ(k,k′)(w, j) = τ(k,k′)(w′, j − i′ + i)

)
Proof. We prove by induction on k. Let k = 0. Since for all i ≤ |w′|, w[i − k′, i + k′] =
w′[i − k′, i + k′], the claim holds for the base case.

Now, let us assume that the claim is true for all numbers less than or equal to k and
let τ(k+1,k′)(w, i) = τ(k+1,k′)(w, i′). Then by Lemma 6.2.7 {τ(k,k′)(w, j) | j < i} =
{τ(k,k′)(w, j) | j < i′} and therefore

{τ(k,k′)(w, j) | i < j < i′} ⊆ {τ(k,k′)(w, j) | j < i} (5)

59

6.2. UPPER BOUNDS VIA LINEAR TEMPORAL LOGIC

Similarly Lemma 6.2.7 gives us that

{τ(k,k′)(w, j) | i < j < i′} ⊆ {τ(k,k′)(w, j) | j > i′} (6)

We now define a mapping

ν(j) =
{

j if j ≤ i
j − i + i′ otherwise

From the inductive hypothesis, we know that τ(k,k′)(w, ν(j)) = τ(k,k′)(w′, j), for all j ≤
|w′|. Therefore we have {τ(k,k′)(w′, j) | j < i} = {τ(k,k′)(w, ν(j)) | j < i} and using
(5) we get {τ(k,k′)(w, ν(j)) | j < i} = {τ(k,k′)(w, j) | j < i′}. Similarly we can show
{τ(k,k′)(w′, j) | j > i} = {τ(k,k′)(w, j) | j > i′}. The claim now follows from Lemma
6.2.7. �

The above lemmas showed that if the two positions of a model have the same (k, k′) type,
then we can construct a smaller model. This shows that the number of distinct (k, k′) types
determine the smallest model of a formula. The following lemma counts the number of
distinct (k, k′) types true in a word. Recall that T (k, k′) is the number of distinct (k, k′)
types possible in any model.

Lemma 6.2.9. Let w be a word. Then the (k + 1, k′)-type at position i in w is uniquely
given by the (0, k′)-type at i, the (k, k′)-types that occur to its right and the (k, k′)-types
that occur to its left. In particular T (k + 1, k′) ≤ q2(p+1)(2k′+1)(k+1).

Proof. For k = 0, Lemma 6.2.6 gives us that T (0, k′) ≤ q2(p+1).(2k′+1). Consider a word
w with T (k, k′) different types. At any position i in the word consider the following pair(
{τ(k,k′)(w, j) | j ≤ i}, {τ(k,k′)(w, j) | j > i}

)
. The number of such distinct pairs is equal to

2T (k, k′) + 1 (since the left hand side is an increasing set). Therefore we can now write
T (k+ 1, k′) = q.(2T (k, k′)+ 1)T (0, k′) ≤ (2qT (0, k′))(k+1). This proves the claim. �

Finally we are in a position to show a small model property for tl[X,Y,F,P,len].

Lemma 6.2.10. Every satisfiable tl[X,Y,F,P,len] formula α of depth (k, k′) has a model
of size less than T (k, k′) + 1.

Proof. Let w = u1 · · · un be a model for α and let n ≥ T (k, k′) + 1. Then there exists
positions i, i′ such that they have the same type. From Lemma 6.2.8 we can give a smaller
w′ such that τ(k,k′)(w, 1) = τ(k,k′)(w′, 1). �

The above small model property for tl[X,Y,F,P,len] gives us that:

Theorem 6.2.11. FO2[<, succ,≡] satisfiability is in Nexptime.

60

6.3. LOWER BOUNDS VIA TILING PROBLEMS

Proof. Lemma 6.2.1 shows that for every FO2[<, succ,≡] formula α, there exists an
tl[X,Y,F,P,len] formula α′ such that α and α′ have the same set of models. Moreover, if
the quantifier depth of α is d, then the operator depth of α′ is 2d. Lemma 6.2.10 shows that
every satisfying tl[X,Y,F,P,len] formula α′ of operator depth 2d has a satisfying model
of size s = O(lcm(α)4d2

24pd2
). A Nexptime machine can guess this model and verify it

in time s2 × |α|. �

6.3 lower bounds via tiling problems

We now give the lower bound for these logics. While showing lower bound results, as
already explained, we will assume that all the “numbers” in the formulas will be written
in unary notation. We first show that FO2mod[<] where the modulo numbers are written
in unary notation is Expspace hard. Then we show that FO2[≡], where the numbers for
the modulo predicates are written in unary, is Nexptime hard. Moreover, we assume that
the formulas have an alphabet size of 2. Note that the satisfiability problem for the logic
FO2[<] for a fixed alphabet is Np-complete [WI09].

The lower bound results in this section are shown by reducing from Tiling problems. We
define the required Tiling problems now.

6.3.1 Tiling problems

A tiling system [WTC61] is a tuple S = (T , Rt, Dn), where T is a finite set of tiles,
Rt ⊆ T × T and Dn ⊆ T × T are, respectively, the right (horizontal) and down (vertical)
adjacency relations (We will use these to define a constant size alphabet in a reduction).
A tiling problem is the tuple (S , n, top1, ..., topn, bot), where n ∈N and is given in unary
and top1, ..., topn, bot ∈ T . A tiling of an m × k grid R ⊆ N2 is a mapping τ : R → T
respecting the right and down relations, that is, whenever (i, j + 1) or (i + 1, j) is in R,
we have Rt(τ(i, j), τ(i, j + 1)) or Dn(τ(i, j), τ(i + 1, j)), as the case may be.

We give below two versions of the tiling problem (S , n, top1, ..., topn, bot) corresponding
to Expspace and Nexptime Turing machines respectively. Pan and Vardi [PV06] give a
similar argument for an Np-complete problem.

rectangle til ing problem Given a tiling problem (S , n, top1, . . . , topn, bot), the Rect-
angle tiling problem asks, does there exist an m and a tiling of an m× 2n grid such that the
first n tiles in the top row is top1, ..., topn in order and there exists a tile bot in the bottom
row?

Proposition 6.3.1. There exists a tiling system S = (T , Rt, Dn), such that its Rectangle
tiling problem (S , n, top1, ..., topn, bot) is Expspace-complete.

61

6.3. LOWER BOUNDS VIA TILING PROBLEMS

square til ing problem Given a tiling problem (S , n, top1, . . . , topn, bot), the Square
tiling problem asks, does there exist a tiling of an m ×m grid, where m is the product of
the first n primes, such that the first n tiles in the top row is top1, ..., topn in order and
there exists a tile bot in the bottom row?

Proposition 6.3.2. There exists a tiling system S = (T , Rt, Dn), such that its Square
tiling problem (S , n, top1, ..., topn, bot) is Nexptime-complete.

6.3.2 Modulo counting is Expspace-hard

We show that satisfiability of FO2mod[<] is Expspace-hard by reducing from the Expspace-
complete Rectangle tiling problem. The following lemma shows that x ≡ y(mod 2n) is
definable by an FO2mod[<] formula, which allows us to specify the “down” relation in a
tiling system.

We denote by Odd y α the formula ∃0,2 y α.

Lemma 6.3.3. There exists an algorithm which given an n ∈ N can output a formula,
χn(x, y) ∈ FO2mod[<] such that χn(x, y) is of size O(n) and quantifier depth 2 and such
that χn(x, y) is true iff x ≡ y(mod 2n).

Proof. For all i ≤ n, we give formulas ψi(x) such that ψi(x) is true iff the ith least signifi-
cant bit (lsb) of x is 1. ψ1(x) is true if x is odd and is given by the formula Odd y(y ≤ x).
For all i ≥ 2:

ψi(x) := Odd y(y < x ∧ ∃(2
i−1,2i)x(x ≤ y))

Let C(x) be the number of positions y which satisfy the conditions y < x and y ≡ 2i −

1 (mod 2i). That is
C(x) = |{y < x | y ≡ 2i − 1 (mod 2i)}|

. We show by induction on C(x) that

ψi(x) is true ⇔ ith lsb of x = 1

When C(x) = 0, we know that x < 2i − 1. This means the ith lsb is 0 and therefore the
claim is true for the base case. For the induction step, assume the claim to be true for all
x ≤ z. Let C(z) = k and C(z + 1) = k + 1. Therefore by IH, we know that for all x ≤ z,
ψi(x) is true iff the ith least significant bit of x is 1. Since C(z) = k and C(z+ 1) = k + 1,
we have z ≡ 2i − 1(mod 2i). This implies that if we add an 1 to z the ith bit toggles. The
ith bit will be the same from z to z + 2i − 1. Thus for all numbers y ∈ [z, z + 2i − 1], we
have ψi(y) is true iff ith bit is 1.

Now χn(x, y) :=
∧n

i=1(ψi(x)⇔ ψi(y)). The size of χn(x, y) is O(n). �

Theorem 6.3.4. The satisfiability problem for FO2mod[<] is Expspace-hard even for a
constant alphabet (and constant quantifier depth).

62

6.3. LOWER BOUNDS VIA TILING PROBLEMS

Proof. Our reduction is from the Expspace-complete Rectangle tiling problem
I = (S , n, top1, ..., topn, bot). Here S = (T , Rt, Dn), where T = {T1, ..., Tt}. We take two
more copies of T , T Dn = {T Dn

i | Ti ∈ T } and T Rt = {T Rt
i | Ti ∈ T }.

We give a polynomial time reduction, which when given an instance of the problem I will
output a formula ψI over the alphabet Σ = T ∪T Dn ∪T Rt such that there exists a tiling for
I iff ψI is satisfiable. For a tiling τ, we associate a word model Mτ ∈ P(Σ)∗ such that τ is
a tiling for I iff Mτ |= ψI . We denote by Mτ(i, j) the letters at the (i− 1)2n + jth position
in Mτ. We will ensure that Mτ will satisfy the property τ(i, j) = Tk ⇔ Tk ∈ Mτ(i, j).

The formula ψI is a conjunction of the formulas ψinit,ψ f inal,ψnext,ψconstraints describ-
ing the initial input configuration, the final configuration, the next move, and the con-
straints respectively. The input configuration says that the first row contains the tiles
top1, · · · , topn. The formula ψinit is the conjunction of α1, ...,αn, where αi says that the
ith cell in the first row contains the tile topi. This is encoded by saying that the first
location x which satisfies x ≡ i (mod 2n) is the ith cell in the first row.

αi := ∀x ((x ≡ i (mod 2n) ∧ ∀y < x ¬(y ≡ i (mod 2n)))⇒ topi(x))

Claim 6.3.5. The formula ψinit =
∧

i αi is such that

Mτ |= ψinit ⇔ for all i ≤ n, Mτ(1, i) = topi

Proof. αi is satisfied only if Mτ(1, i) = topi. �

The final configuration says that there exists a tile bot in some cell. This is given by the
formula, ψ f inal := ∃y bot(y). Finally ψconstraints says that only one tile is true in a position
and can be given by an FO2[<] formula.

The non-trivial part is to show that the down and right relations are respected. The formula
ψnext := ψdown ∧ ψright, ensure that the relations Dn and Rt are respected. We first explain
in some detail how the down constraint is respected.

Let us say tile Tl′ is true at Mτ(i, j) and let us assume that there is only one tile Tl such that
Dn(Tl′ , Tl) is true. Hence we need to ensure that Tl ∈ Mτ(i + 1, j). The idea is to count
modulo 2, the number of occurrences of T Dn

l in all cells above i and in the same column.
That is we count the size of the set {k | T Dn

l ∈ Mτ(k, j), k < i}. If this count is even then
we force T Dn

l to be true at Mτ(i, j). Otherwise we force T Dn
l to be false at Mτ(i, j). This

will ensure that the count of {k | T Dn
l ∈ Mτ(k, j), k ≤ i} to be odd. Similarly, for all other

tiles T Dn
s , T Dn

l we ensure the count {k | T Dn
s ∈ Mτ(k, j), k ≤ i} to be even. We will

preserve this invariant at every cell. Hence the tile at (i + 1, j) can now be determined by
looking at the count of {k | T Dn

l ∈ Mτ(k, j), k < i + 1} for every tile Tl and setting that tile
whose count is odd. That is for all i, j we ensure that (∃!l stands for unique l)

Tl′ ∈ Mτ(i, j)⇒ ∃!l such that |{k | T Dn
l ∈ Mτ(k, j), k ≤ i}| ≡2 1⇔ Tl ∈ Mτ(i + 1, j)

63

6.3. LOWER BOUNDS VIA TILING PROBLEMS

The following formula ψ1(x) says that if you see an odd number of occurrences of the
letter T Dn

l in the current column strictly above it, then we set letter Tl to be true at x. This
ensures that Tl ∈ M(i + 1, j).

ψ1(x) :=
t∧

l=1

(
Odd y(T Dn

l (y) ∧ y < x ∧ χn(x, y)
)
⇒ Tl(x)

The following formula ψ2 says that if a position x contains the tile Tl′ and the position
(y = 2n + x) contains the tile Tl (that is the cell in the same column, but exactly one row
below), then we set the count of the letter T Dn

l above and in the same column as x to be
odd. This implies setting T Dn

l to be true or not at x depending on the count above x and
in the same column.

ψ2(x) :=
t∧

l′=1

(Tl′(x)⇒
∨

(Tl′ ,Tl)∈Dn

(φl(x) ∧
∧
j,l

¬φ j(x)))

Here for all s ≤ t we define φs(x) to stand for the following formula, which forces the
count of T Dn

s to be even or odd depending on whether T Dn
s ∈ Mτ(i + 1, j) or not.

φs(x) := Odd y(T Dn
s (y) ∧ (y ≤ x) ∧ χn(x, y))

We finally write ψdown = ∀x ψ1(x) ∧ ψ2(x). ψ2 enables the count of a particular letter
T Dn

l to odd and ψ1 sets the tile to Tl if the count is odd for T Dn
l .

Claim 6.3.6.

Mτ |= ψdown ⇒ for all i, j,∃l, l′ ∈ [t] (Tl ∈ Mτ(i + 1, j) and Tl′ ∈ Mτ(i, j)) and Dn(Tl′ , Tl)

Proof. Let us fix an i, j. We show that Mτ |= ψdown ⇒

Tl′ ∈ Mτ(i, j)⇒ ∃!l such that |{k | T Dn
l ∈ Mτ(k, j), k ≤ i}| ≡2 1⇔ Tl ∈ Mτ(i + 1, j)

Since Tl′ ∈ Mτ(i, j), and Mτ |= ψ2(i) we have that there exists some Tl such that φl(i)
is true and for all s , l, we have φs(i) to be false. This ensures that the first implication
is true. Since φl(i) is true, and Mτ |= ψ1(i + 1) we have the second implication to also
hold. �

A similar formula ψright using the letters T Rt can be written for checking whether the
Right relations are respected.

Claim 6.3.7.
Mτ |= ψI ⇔ τ is a tiling for I

Proof. (⇒) : We show that if there exists a model M |= ψI then we can give a valid tiling
τ for I. So let M |= ψI . Our tiling τ is defined as follows. For all i, j

τ(i, j) = M(i, j) ∩ T

64

6.4. DISCUSSION

Since M |= ψconstraints we can observe that τ(i, j) consists of exactly one tile, for all
i, j. We have that M satisfy ψinit and hence from Claim 6.3.5 we know that the first
row of M is according to the input instance I. Now from Claim 6.3.6 we know that the
down relations are respected in M. Similarly ψright will ensure that the right relations are
respected. Finally we have that M |= ψ f inal and hence we know that there exists the tile
type bot. Thus the τ got from model M is a valid tiling for I.
(⇐) : It is easy to observe that we can construct a model Mτ such that Mτ |= ψI . �

This completes the proof. �

In the above theorem the numbers in the formulas χn(x, y) were written in binary notation.

Corollary 6.3.8. The satisfiability problem for FO2mod(2)[<,≡] is Expspace-hard even
when the numbers are in unary notation.

Proof. Let p1, ..., pn be the first n primes and m be their product. Clearly m ≥ 2n. By the
prime number theorem, asymptotically there are n primes within the first n log n numbers
and hence one can generate the first n primes in time polynomial in n. Next we make use
of the Chinese remainder theorem to generate a formula for x ≡ y(mod m) (but of size
O(n4)), because all numbers less than or equal to m (and hence ≤ 2n) can be uniquely
represented by their remainders modulo the primes p1, ..., pn. Now we follow the proof
of Theorem 6.3.4. �

6.3.3 Modulo predicates is Nexptime-hard

We now show that FO2[≡] is Nexptime-hard even for a constant alphabet, as opposed to
FO2[<] being Np-complete [WI09].

Theorem 6.3.9. FO2[≡] satisfiability is Nexptime-hard even for constant alphabet size.

Proof. We reduce from the Nexptime-complete Square tiling problem defined earlier. We
introduce 2n distinct primes, p1, ..., pn (for encoding row index), and q1, ..., qn(for encod-
ing column index). These primes can encode any cell (i, j). One can now write a formula
αdown(x) which ensures that there exists a y such that the row index of y is one more than
that of x and the column index of x and y are the same. The formula can also specify that
y should satisfy the down constraints. Similarly one can write a formula to force the right
constraints. It is easy to write the initial and final conditions. �

6.4 discussion

In this chapter we looked at the satisfiability of various counting extensions of first order
logic with two variables over words. The counting extensions we looked at are modulo

65

6.4. DISCUSSION

counting quantifiers, modulo counting predicates. We also looked at extending the logic
FO2[<] by group quantifiers.

The following table 5 gives the status of the satisfiability problem for various extensions
of first order logic over words. The results of this chapter are given in parentheses.

Logic [<, succ] [<]
FO2(increasing alphabet) Nexptime[EVW02] Nexptime-hard [EVW02]
FO2 Nexptime-complete [WI09] Np-complete [WI09]
FO2[≡] Nexptime Nexptime-hard
FO2mod Expspace Expspace-hard
FO2grp Expspace Expspace-hard

Table 5: Satisfiability of various two variable logics (all logics other than the first entry
assumes increasing alphabet for upper bound and a fixed alphabet for lower bound).

An interesting question would be to identify the exact complexity of the logic FO2mod(2)[<].
This logic is allowed to use only modulo counting quantifiers over the number 2. No mod-
ulo predicates are allowed.

Open Problem 6.4.1. The complexity of satisfiability of FO2mod(2)[<] is known to be
between Np and Pspace. The exact complexity is not known.

66

Part III

E X T E N S I O N S T O F I R S T O R D E R L O G I C W I T H
A D D I T I O N

7

S U RV E Y O N A D D I T I O N R E L AT I O N

In this part we look at the logic FO[<,+] extended with various regular quantifiers. We
first look at expressive power of the various logics, especially on proving lower bounds
for these logics. Then we look at satisfiability questions.

7.1 expressiveness

Non expressibility results for various logics which uses addition and a variety of quanti-
fiers has been considered earlier. Let us consider the following language, for an m ∈N.

Lm = {w ∈ {a, b}∗ | |w|a ≡ (0 mod m)}

The earliest result was by Lynch [Lyn82] who showed that FO[<,+] cannot count modulo
any number.

Theorem 7.1.1. [Lyn82] For all m > 1, Lm is not definable in FO[<,+].

Niwiński and Stolboushkin [SN97] looked at numerical predicates of the form y = px
and showed that y = 3x is not definable by y = 2x and < relation. Nurmonen [Nur00]
extend this result to the case of counting quantifiers. He showed that FOmod(2)[<, y = 2x]
cannot define the relation y = 3x. Finally Roy and Straubing [RS07] gave lower bound
results in the presence of addition and modulo counting quantifiers.

Theorem 7.1.2. Let m, n ∈N be such that m has a prime factor that does not divide n.
[SN97] Then Lm is not definable in FO[<, y = nx].
[Nur00] Then Lm is not definable in FOmod(n)[<, y = nx].
[RS07] Then Lm is not definable in FOmod(n)[<,+].

Results by Ruhl [Ruh99a], Lautemann et.al. [LMSV01], Lange [Lan04a], Schweikardt
[Sch05], all show the limited expressive power of addition in the presence of majority
quantifiers.

Theorem 7.1.3. [Ruh99a, LMSV01, Lan04a, Sch05] The addition relation is expressible
in MAJ[<].
The multiplication relation is not definable in MAJ[<,+].

68

7.1. EXPRESSIVENESS

This in effect shows that MAJ[<,+] is a strict subset of the computational complexity
class TC0. What do we know about the regular languages expressible in MAJ[<,+]?
Behle, Krebs and Reifferscheid [BKR09b, BKR09a] tries to answer this question. They
show that word problems over non-solvable groups are not definable in the two variable
fragment of MAJ[<,+].

Theorem 7.1.4. [BKR09b, BKR09a] Consider a word problem L, over a non-solvable
group. Then L is not definable in the two variable fragment of MAJ[<,+].

This part of the thesis looks at regular quantifiers in the presence of a linear order and
addition relation. In the presence of a linear order, addition and multiplication, most
of these results are unknown, and are fundamental to understanding circuit complexity
classes. A question, which can arise in the minds of the readers, might be what do we
know when there is only the addition relation, or only linear order and multiplication or
only the multiplication relation. We quickly go through these questions. Schweikardt’s
paper [Sch05] and her thesis [Sch01] give a detailed study of this area.

Theorem 7.1.5. FO[<](FO[<,+]= FO[+].
[GS66] FO[<,+] (FO[<,+,×].
[Rob49, Lee03, Imm99, Sch05] FO[+,×] = FO[<,×] = FO[<,+,×].
[Sch05] FO[×] cannot express <.

We now look at regular quantifiers and their connections to Circuit complexity classes.
Later we look at the Crane Beach conjecture and how this concept can be used for proving
lower bounds.

7.1.1 Descriptive Complexity of Circuit classes

The circuit family class AC0 is defined as the family of languages recognized by constant
depth polynomial sized family of circuits having unbounded fan-in AND, and OR gates.
Similarly ACC0(p) is the family of languages recognized by constant depth polynomial
sized family of circuits containing unbounded fan-in AND, OR and MODp for p > 0. Sim-
ilarly CC0(p) corresponds to constant depth, polynomial size circuits with only MODp
gates. ACC0(CC0) is defined as the set of languages recognized by an ACC0(p) (CC0(p))
family of circuits for some p > 0. The circuit class TC0 corresponds to circuits with con-
stant depth, polynomial size and having in addition to AND and OR gates MAJ (majority)
gate. On the other hand NC1 circuits are defined polynomial sized, log depth circuits con-
taining AND and OR gates. There is an alternate characterization for NC1. It is the family
of languages recognized by constant depth, polynomial sized family of circuits which
uses AND, OR and finite group gates. The reader can refer to the books [Vol99], [Juk12]
to know more about these classes.

Results by Razborov [Raz89] and Smolensky [Smo87] shows that:

69

7.1. EXPRESSIVENESS

Theorem 7.1.6. [Raz89, Smo87] If p is a prime number and q is a prime other than p
then the language Lq is not contained in ACC0(p).

Hence we can infer the following: AC0 is separated from ACC0(p) for a p > 0 [FSS84];
there are languages in CC0(p) which are not in AC0; the classes ACC0(p) and ACC0(q)
are different from each other if p and q are distinct primes. But relationships between
most other classes are open. For example, we do not know whether CC0 is different from
ACC0. In fact we do not know whether CC0(6) contains AC0 or whether CC0(6) is even
distinct from Np. These are among the biggest unsolved problems in circuit complexity.

Each of the above circuit classes have a model-theoretic characterization. It is known,
from the results of Immerman [Imm87b, Imm87a], that the set of languages accepted by
non-uniform-AC0 circuits are exactly those definable by first order logic which uses an
order and some arbitrary relations. We denote this logic by FO[<, Arb], where Arb is
the class of all relations possible on N. On the other hand dlogtime-uniform-AC0 circuits
are exactly those definable (see Barrington et.al[BIS90]) by first order logic which uses
order, addition and multiplication relations (denoted by FO[<,+,×]). First order logic
with different built-in predicates can be seen as the complexity class AC0 with different
uniformity conditions. From here onwards we consider only dlogtime-uniform circuits
and hence any circuit family we mention will be dlogtime-uniform unless otherwise stated.
Behle and Lange [BL06] gives a notion of interpreting FO[<,+] as highly uniform circuit
classes. Other circuit families also have model theoretic characterization. We have that
the circuit family CC0corresponds to mod[<,+,×], ACC0 corresponds to FOmod[<,+,×],
TC0 corresponds to maj[<,+,×], and NC1 corresponds to group[<,+,×]. The above
characterization of the circuit classes come under Descriptive complexity (it studies how
different complexity classes can be captured by different logics) of circuit classes. The
books by Immerman [Imm99], Vollmer [Vol99] and Straubing [Str94] show the close
connection between logics with monoid quantifiers and circuit classes. Table 6 identifies
the language/complexity classes for logics with different quantifiers and relations.

Relations
[<] [<,+] [<,+,×]

∃ Aperiodic AC0

MODp p-Solvable groups CC0(p)
MOD Solvable Groups CC0

Quantifiers ∃, MODp p-Solvable Monoids Our ACC0(p)
∃, MOD Solvable Monoids ACC0

S 5 Symmetric Group, S 5 NC1

Group Groups Study NC1

∃, Group Monoids NC1

Algebraic characterization Circuit Complexity

Table 6: Generalized quantifiers and Expressiveness

70

7.1. EXPRESSIVENESS

This helps us to look at the questions regarding separation of circuit classes from the
descriptive complexity perspective. But no separation result has been made after the an-
nouncement of Smolensky’s result. Razborov and Rudich [RR97] has analyzed the reason
why these questions are hard. They show that no “natural proof ” can prove the separation
between these classes. Hence, as a first step, one can ask the question of separating the log-
ics when the multiplication relation is not available. That is, can one separate mod[<,+]
from FOmod[<,+]? Is group[<,+] different from FOmod[<,+]? Table 6 shows the al-
gebraic characterization for each of the logic classes if only the linear order is present.
Algebraic techniques can be used to show that these classes are separated from each other
[Str94]. Hence the most natural question would be to understand the classes of languages
accepted by the various logics when addition is also present.

In chapter 8, we give a powerful technique to prove lower bound results for FO[<,+]
extended with regular quantifiers. In fact we show that most of these classes are separated.
The separation corresponds to algebraic properties of the quantifiers. The corollary 8.2.13
puts this in perspective.

7.1.2 The Crane Beach conjecture

As we have seen, there are just a handful of techniques available for proving lower bound
results for circuit families. Most of these techniques are combinatorial in nature. Sec-
ondly, there has been very little understanding of the power the built-in predicates give to
the logic classes. For example, how do we show that a certain language in non-uniform-
AC0is infact not in dlogtime-uniform-AC0. In order to understand the expressive power
of different relations, Thérien proposed (see Barrington et.al[BIL+05]), what came to be
called the Crane Beach conjecture. In order to state the conjecture, we need to define a
neutral letter language.

Definition 7.1.7. Let L ⊆ Σ∗ be a language over the alphabet Σ. We say that a letter
λ ∈ Σ is a neutral letter for the language L if

uλv ∈ L⇔ uv ∈ L

That is we can insert or delete the letter λ from any word, w ∈ Σ∗ without affecting its
membership in L.

Let us look at an example.

Example 7.1.8. (Parity) The following language L2 is a language with a neutral letter,
where b is a neutral letter.

L2 = {w ∈ {a, b}∗ | |w|a ≡ (0 mod 2)}

Here is another example:

71

7.1. EXPRESSIVENESS

Example 7.1.9. (word problem over group) Look at a word problem over a group G. Then
clearly the identity element of the group, 1G is a neutral letter for the language.

The Crane Beach conjecture states that

Conjecture 7.1.10. A language with a neutral letter is definable in FO[<, Arb] iff it is
definable in FO[<].

The conjecture says that first order logic with arbitrary numerical predicates will collapse
to first order logic with only linear ordering in the presence of a neutral letter. The idea
is that, in the presence of a neutral letter, formulas cannot rely on the precise location
of input letters and hence numerical predicates will be of little use. Nevertheless the
conjecture was refuted by Barrington et. al [BIL+05]. In fact they show, using the fact
(see Ajtai and Ben-Or [ABO84]) that dlogtime-uniform-AC0 can count the number of
occurrences of the letter a upto log of the input size, that the conjecture does not hold for
the logic FO[<,+,×], i.e. first order logic with a linear order, addition, and multiplication
relations. The search was then to find out for what logics and relations does the conjecture
hold. So, in the most general form, the Crane Beach conjecture can be stated as follows.
Let NLL denote the class of languages with neutral letters. Let R be a set of relations on
N. Let S be a subset of monoids. Then the Crane Beach conjecture says that 1

Conjecture 7.1.11.
LS[<,R] ∩NLL = LS[<] ∩NLL

In the same paper [BIL+05], the authors identify various logics where the CBC (short
for Crane Beach conjecture) hold and various other logics where the CBC does not
hold. For example. The Boolean closure of the Σ1-fragment of FO[Arb] does satisfy
the conjecture. That is B(Σ1)[Arb] ∩NLL = B(Σ1)[<] ∩NLL. Lautemann, Tesson and
Thérien [LTT06] considered modulo counting quantifiers. They show thatB(Σ0,p

1)[Arb]∩
NLL = B(Σ0,p

1)[<] ∩NLL. This is equivalent to showing that

Theorem 7.1.12. [LTT06] Let p be a prime number. Then

modp[Arb] ∩NLL = modp[<] ∩NLL

Benedikt and Libkin [BL00b], in the context of collapse results in database theory, had
shown that first order logic with only the addition and order relation satisfies the Crane
Beach conjecture. A different proof of the result can be found in [BIL+05]. We show
that this result can be generalized to any monoid quantifier. Let S be a subset of monoids.
Our main result (Theorem 8.2.1) shows that the Crane Beach conjecture hold for the logic
LS[<,+]. That is:

LS[<,+] ∩NLL = LS[<] ∩NLL.

1LS be the logic closed under quantification, where the quantifiers are Lindström quantifiers are over some
monoid in S.

72

7.1. EXPRESSIVENESS

If S is an aperiodic monoid, then the Theorem is equivalent to the result of Benedikt
and Libkin. Roy and Straubing [RS07] (used ideas of Benedikt and Libkin to) show that
FOmod[<,+] in the presence of neutral letters collapse to FOmod[<]. In the same paper
they posed the question

Conjecture 7.1.13. (posed in [RS07])

mod[<,+] ∩NLL = mod[<] ∩NLL

This is proved by a corollary of our Theorem 8.2.1.

Our main Theorem can also be viewed from the Circuit complexity perspective. Our re-
sults therefore can be summarized as: every FO[<,+] uniform constant depth polynomial
size circuit with gates that compute a product in S and that recognize a language with a
neutral letter can be made FO[<]-uniform.

As a consequence of our Theorem 8.2.1 we are able to separate these highly uniform
versions of circuit classes. For example: The theorem states that mod[<,+] definable
languages with a neutral letter are also definable in mod[<]. Since mod[<] cannot simulate
existential quantifiers [Str94] we have that FO[<,+] and mod[<,+] are incomparable. In
fact we show that no group quantifier can simulate existential quantifier if only addition
is available.

Another corollary gives an alternate proof of the known result [RS07] that FOmod(m)[<
,+] cannot count modulo a prime p, which does not divide m.

Another corollary shows that the majority quantifier cannot be simulated by group quan-
tifiers if multiplication is not available, thus separating maj[<,+] from FOgrp[<,+]. Bar-
rington’s theorem [Bar89] says that word problems over any finite group can be defined
by the logic which uses only the S 5 group quantifier (the group whose elements are the
set of all permutations over 5 elements) if addition and multiplication predicates are avail-
able. Our result show multiplication is necessary for Barrington’s theorem to hold. In
other words S 5 cannot define word problems over S 6 if only addition is available.

The interesting thing to note is how the neutral letter concept has turned out to useful for
proving lower bound results for “highly” uniform circuit classes. The neutral letter has
also been used in the past for showing non-expressibility results. It had been used for
showing super linear lower bounds for bounded-width branching programs [BS91], super
linear wires in circuit classes [KPT05] and in communication complexity [CKK+07]. The
neutral letter concept is also closely related to collapse-results in database theory [BL00a].

7.1.3 Presburger arithmetic extended with modulo counting

Now look at Presburger arithmetic. Presburger arithmetic is first order logic over the
arithmetic model (N,<,+,≡, 0, 1). An important characteristic of Presburger arithmetic

73

7.2. SATISFIABILITY

is that it allows quantifier elimination. That is for every formula in this logic, there exists
a quantifier free formula which is equivalent to it. That is

Theorem 7.1.14. [Pre29] Let φ(x1, . . . , xk) be a formula in Presburger arithmetic. Then
there exists a quantifier free formula 2 ψ(x1, . . . , xk) such that for every n1, . . . , nk ∈N

φ(n1, . . . , nk) is true ⇔ ψ(n1, . . . , nk) is true

The above theorem also gives decidability of Presburger arithmetic. Presburger arithmetic
satisfies other properties too. From the results of Ruhl [Ruh99a], Schweikardt [Sch05] we
know that FO = FOunC over (N,<,+,≡, 0, 1).

Theorem 7.1.15. [GS66, Ruh99a, Sch05] Presburger arithmetic is closed under unary
counting (and hence modulo counting) quantifiers.

7.2 satisfiability

Let us look at the satisfiability questions. By an old result of Robinson [Rob58], we
know that the satisfiability of first order logic with the addition relation, FO[<,+] over an
alphabet of size greater than or equal to 2, is undecidable.

Theorem 7.2.1. [Rob58] Satisfiability of FO[<,+] is undecidable over a two letter al-
phabet.

A more recent proof can be found in [Lan04b]. We strengthen this claim to show that
even the two variable fragment of this logic is undecidable. In particular we look at the
logic FO2[<, succ, y = 2x, 1] over words and show that it is undecidable.

From [LMSV01] we know that FOunC[<] can define addition. From the above discussion,
we have that FOunC[<] is undecidable.

Theorem 7.2.2. [Rob58] Satisfiability of FOunC[<] is undecidable.

A closely related logic is FO2unC[<, succ] over words. We show that the satisfiability
problem is undecidable for this logic.

One can wonder, whether FO[<,+] is decidable when the alphabet size is 1. Observe that
this logic corresponds to Presburger arithmetic.

Presburger’s classic quantifier elimination result [Pre29] showed that FO over (N,<,+)
is decidable. See Theorem 7.1.14. A second proof of this result, due to Büchi [B6̈0],
goes via interpretation on finite words, giving nonelementary decidability (see Bruyère,
Hansel, Michaux and Villemaire [BHMV94]).

2 There is infact an effective translation of a formula into its equivalent quantifier free formula.

74

7.2. SATISFIABILITY

Fischer and Rabin gave a superexponential lower bound for Presburger arithmetic [FR74].
Analysis of Presburger’s proof by Cooper [Coo72], Oppen [Opp78], Ferrante and Rackoff

[FR79] and Berman [Ber80] showed that the complexity of satisfiability is ATime[22O(n)
, O(n)],

which is an alternating machine using a linear number of alternations and taking double
exponential time. A matching lowerbound was also given by Berman [Ber80].

Theorem 7.2.3. [FR79, Ber80] Satisfiability of Presburger arithmetic is ATime[22O(n)
, O(n)]-

complete.

We look at Presburger arithmetic extended with modulo counting quantifiers. We give a
Ferrante-Rackoff analysis and an elementary 2Expspace upper bound for the logic FOmod
over (N,<,+), which is slightly above Berman’s lower bound.

In Chapter 8 we look at the expressiveness of first order logic with addition relation,
extended with regular (monoid) quantifiers.

In Chapter 9 we look at the satisfiability of various fragments of first order logic with
addition, extended with modulo counting quantifiers.

75

8

F O G R P [<,+] E X P R E S S I V E N E S S (L OW E R B O U N D S R E S U LT S)

8.1 introduction

In this chapter we will look at the expressiveness questions for FO[<,+] extended with
various group quantifiers.

We present our main theorem and its corollaries in Section 8.2 followed by a section 8.3
with the Proof Strategy and then section 8.4, which gives the proof of Theorem 8.4.8.
Section 8.5 which is our main contribution shows how to replace group quantifiers by its
active domain version.

8.2 results

Recall that NLL is the set of all neutral letter language, where the neutral letter is λ. Let
S ⊆ M be any set of monoids. We show that the Crane Beach conjecture is true for the
logic LS[<,+].

Theorem 8.2.1 (Main Theorem). Let S ⊆ M. Then

LS[<,+] ∩NLL = LS[<] ∩NLL

The proof of this theorem is given in Section 8.4.

8.2.1 Non definability Results

Theorem 8.2.1 give us the following corollaries.

Corollary 8.2.2. All languages with a neutral letter in LM[<,+] are regular.

Proof. By Theorem 8.2.1 we know that all languages with a neutral letter in LM[<,+]
can be defined in LM[<] which by Lemma 2.5.3 is the set of all regular languages. �

76

8.2. RESULTS

Recall that a monoid M divides a monoid N if M is a morphic image of a submonoid of
N.

Corollary 8.2.3. Let S ⊆ G. Let G be a simple group that does not divide any monoid M
in S. Then the word problem over G is not definable in LS[<,+].

Proof. The word problem over G has a neutral letter. The result now follows from Theo-
rem 8.2.1 and Lemma 2.5.3. �

It is known that the majority quantifier can be simulated by the non-solvable group S 5
if both multiplication and addition are available [Vol99]. We show that multiplication is
necessary to simulate majority quantifiers.

Corollary 8.2.4. maj[<] * LM[<,+].

Proof. Consider the language L ⊆ {a, b, c}∗ consisting of all words with an equal number
of a’s and b’s. L can be proven to be definable in maj[<]. Also note that c is a neutral
element for L. By Corollary 8.2.2, and the fact that L is nonregular, we know that L is not
definable in LM[<,+]. �

Barrington’s theorem [Bar89] says that the word problem of any finite group can be de-
fined in the logic LS 5 [<,+, ∗]. The following theorem shows that multiplication is neces-
sary for Barrington’s theorem to hold.

Corollary 8.2.5. The word problem over the group S 6 is not definable in LS 5 [<,+]. In-
fact there does not exist any one finite monoid M such that all regular languages can be
defined in LM[<,+].

Proof. A6 is a simple subgroup of S 6, which does not divide S 5. From Corollary 8.2.3 it
follows that the word problem over S 6 is not definable in LS 5 [<,+].
For any finite monoid M, there exists a simple group G such that G does not divide M and
hence the word problem over G is not definable in LM[<,+]. �

Let Lp be the set of all words w ∈ {0, 1}∗ such that the number of occurrences of 1 in
w is equal to 0 (mod p). Then we get the result in [RS07] that Lp is not definable in
FOmodm[<,+], if p is a prime which does not divide m.

Corollary 8.2.6 ([RS07]). If p is a prime which does not divide m, then Lp is not definable
in FOmodm[<,+].

Proof. Let Lp be definable in FOmodm[<,+]. Since 0 is a neutral letter in Lp, Theorem
8.2.1 says Lp is also definable in FOmodm[<]. Due to Lemma 2.5.3 and [Str94], this is a
contradiction. �

77

8.2. RESULTS

It is known that languages accepted by CC0 circuits are exactly those which are definable
by Lmod[<,+, ∗] formulas [Vol99]. On the other hand, it is an open question whether the
language 1∗ can be accepted by the circuit complexity class CC0 [Str94].

To progress in this direction Roy and Straubing [RS07] had posed the question of whether
1∗ < Lmod[<,+]. Below we show that this is the case.

Corollary 8.2.7. 1∗ < Lmod[<,+]. In fact 1∗ < LG[<,+].

Proof. The minimal monoid which can accept 1∗ is U1 and clearly 1 is a neutral letter. By
Theorem 8.2.1 if there is a formula in LG[<,+] which can define 1∗, then LG[<] can also
define 1∗. From Lemma 2.5.3 it follows that the monoid U1 divides a group. But this is a
contradiction [Str94]. �

Behle and Lange [BL06] give a notion of interpreting LS[<,+] as highly uniform circuit
classes. As a consequence we can interpret the following results as a separation of the
corresponding circuit classes.

Corollary 8.2.8. The following separation results hold, for all m > 1

• FO[<,+] * mod[<,+].

• modm[<,+] * FO[<,+].

• FO[<,+] (FOmodm[<,+] (FOmod[<,+]

• FOmod[<,+] (FOgroup[<,+]

• maj[<,+] * FOgroup[<,+]

Proof. We will show that FO[<,+] * mod[<,+]. Assume not. Consider the language
L = 1∗ ⊆ {0, 1}∗. It is clearly a neutral letter language (1 is the neutral letter). Also
this language is expressible in FO[<]. We get a contradiction since by Corollary 8.2.7 we
know 1∗ is not in mod[<,+]. �

8.2.2 Decidability of Regular languages in LS[<,+]

We now look at regular languages definable by the logic LS[<,+], for an S ⊆ M. We
first show that this logic is closed under quotienting and under inverse length preserving
morphims. We do not give the proofs of these claims, since they follow the standard
technique. One can refer to [RS07] for the proof.

Lemma 8.2.9. Let S ⊆ M and Σ be a finite alphabet. Let L ⊆ Σ∗ be definable in LS[<,+]
and u, v ∈ Σ∗. Then u−1Lv−1 is also definable in LS[<,+].

78

8.2. RESULTS

Lemma 8.2.10. Let S ⊆ M. Let Σ, Γ be finite alphabets and let h : Γ∗ → Σ∗ be a
homomorphism such that h(Γ) ⊆ Σr for some fixed r > 0. If L ⊆ Σ∗ is definable in
LS[<,+], then h−1(L) ⊆ Γ∗ is also definable in LS[<,+].

We now give an algebraic characterization for regular languages definable by LS[<,+].
Recall from the Preliminaries chapter that LS[REG] is defined as LS[<, succ,≡] where ≡
are modulo predicates. 1

Theorem 8.2.11. Let S ⊆ M be a set of monoids. Let L ⊆ Σ∗ be a regular language,
which is accepted by a morphism h : Σ∗ → V, where V is a semigroup. Then the
following are equivalent.

1. L is definable in LS[<,+]

2. For all k ∈N, every group in h(Σk) divides a monoid in bpc(S).

3. L is definable in LS[REG]

Proof. (1 ⇒ 2) : Consider a k ∈ N and a G ∈ h(Σk). We first look at the language
h−1(1G). It is well known (for example, [Str94]) that h−1(1G) can be written as a fi-
nite boolean combination of languages of the form u−1Lv−1, for strings u, v ∈ Σ∗. Now
consider a new alphabet

Γ = {aw | w ∈ Σk, h(w) ∈ G}

We can now define a mapping f : Γ → Σk as f (aw) = w. Consider the language
L′ = f −1(h−1(1G)). From Lemma 8.2.9 and Lemma 8.2.10 we know that L′ is definable
in LS[<,+]. But note that L′ is a language with a neutral letter. The letter aw, where
h(w) = 1G acts as a neutral letter. Therefore L′ is a language definable in LS[<], which
from Krohn Rhodes theorem 2.3.4 implies that G divides a monoid in bpc(S).
(2 ⇒ 3): Let us list down all the sets, h(Σ), h(Σ2), Since the subsets ofV are finite,
there exists q, r ∈ N such that h(Σq) = h(Σq+r). Choosing an l = lcm{q, r} we get that
h(Σl) = h(Σ2l). We can now split L into the following parts.

L =
⋃

u∈Σ<l

u.
(
u−1L ∩ (Σl)∗

)
Let us denote by Lu = u−1L∩ (Σl)∗. First let us show that, if we can write Lu inLS[REG],
then we can write u.Lu also in LS[REG]. Let us assume that the sentence φu ∈ LS[REG]
models the language Lu. Let u = a1 . . . al′ , where l′ < l. Then the following formula
models the language u.Lu.

φu[> l′] ∧ a1(1) ∧ · · · ∧ al′(l′)

Above φu[> l′] is a formula got by relativizing all variables in φu by > l′. Now since L is
a disjunction of languages of the form uLu we have that L can be written in LS[REG].

1 Theorem 8.2.11 was mentioned for solvable monoids. One of the referees pointed out that the proof goes
through for all finite monoids.

79

8.3. PROOF STRATEGY

We need to show that Lu is also definable. Consider the following alphabet Γ = {aw | w ∈
Σl}. Let M = h(Σl). Since M = h(Σ2l) we have that M is closed under concatenation
and therefore a monoid. Therefore we have that word problems over M are definable in
LM[<]. Finally using Lemma 8.2.10 we get that Lu is definable in LM[REG].
(3⇒ 1): This holds, since addition can simulate all the predicates in REG. �

Then we can identify the set of regular languages definable in LS[<,+] when S is a set
of monoids.

Corollary 8.2.12. Let S be a set of monoids. Then

LS[<,+] ∩ Regular languages = LS[REG]

Let S be a set of monoids such that, given a group G, it is decidable if G divides a monoid
in bpc(S). Then, given a regular language L, it is decidable if L ∈ LS[<]. Then our main
theorem gives us that it is decidable if L ∈ LS[<,+].

Corollary 8.2.13. Let S be a set of monoids such that, given a monoid G, it is decidable
if G divides a monoid in bpc(S). Then, given a regular language L, it is decidable if
L ∈ LS[<,+].

Proof. Since L is a regular language definable in LS[<,+]. Then L has the alternate
characterization given by Theorem 8.2.11. Let h be a morphism which accepts L. Then
we know that there exists t, r ∈N, such that h(Σt) = h(Σt+r), which implies that we can
list down all the sets in h(Σk), for k ≤ t + r and the groups in these sets. The claim now
follows from the fact that there exists an algorithm to check whether each of these groups
divide a monoid in bpc(S). �

The above theorem for FOmod[<,+] was proved in [RS07] and the question when S =
MOD was left open. The following corollary answers this special case.

Corollary 8.2.14. Given a regular language L, the question whether L is definable in
mod[<,+] is decidable.

8.3 proof strategy

For the purpose of proof we work over infinite strings which contain finite number of
non-neutral letters. Our general proof strategy is similar to Benedikt and Libkin [BL00b]
or Roy and Straubing [RS07] and consists of three main steps.

1. Given a formula φ ∈ LS[<,+], we show that φ is “weakly equivalent” to an “active
domain formula” φ′ ∈ LS[<,+]. Active domain formulas quantify only over non-
neutral letter positions. Our major contribution (Theorem 8.4.8) is in showing this
step.

80

8.3. PROOF STRATEGY

2. Any active domain formula φ′ ∈ LS[<,+] is weakly equivalent to an active domain
formula φ′′ ∈ LS[<]. This step follows from an application of Ramsey theory
(Theorem 8.4.9).

3. All active domain formulas in LS[<] accept languages with a neutral letter. This is
an easy observation given by Lemma 8.4.10.

Finally using these three steps we can show that if a formula in LS[<,+] is weakly equiv-
alent to an active domain formula in LS[<], then it is infact equivalent. This proves our
main Theorem.

φ

LS[<,+]

φ′

acd-LS[<,+]

(Our main contribution)

weakly equivalent
φ′′

acd-LS[<]

(Ramsey Theorey)(Trivial)

equivalent
acd active domain formula

Figure 9: The three step Proof strategy.

The main step is to build an active domain formula, that is step 1. Here we show how
to simulate a general quantifier by an active domain formula. In the case of FO[<,+],
the existential quantifier is equivalent to the monoid quantifier U1. The monoid U1 is
a commutative and idempotent monoid. Hence neither the order in which the quantifier
runs over the positions of the word is important, nor does it matter if positions are queried
multiple times. In [RS07] this idea was extended in such a way that in the simulation of the
mod quantifier (again a commutative monoid), every position is taken into account exactly
once. In their construction while replacing a mod quantifier they need to add additional
FO quantifiers and hence their construction only allows to replace a mod[<,+] formula by
an active domain FOmod[<,+] formula. In this paper, we construct a formula that takes
every position into account exactly once and in the correct order. Moreover we do not
introduce any new quantifier, but use only the quantifier that is replaced. This enables us
to show the Crane Beach conjecture for logics whose quantifiers have a non-commutative
monoid or are groups. For example mod[<,+], group[<,+], and FOgroup[<,+].

81

8.4. PROOF OF THE MAIN THEOREM

In contrast to previous work, we do not construct an equivalent active domain formula,
but only a formula that is equivalent for certain domains. We show that it is in general
sufficient to show this for one infinite domain.

8.4 proof of the main theorem

In this section we handle the general proof steps as in [BL00b] and [RS07] of removing
the plus predicate from the formula in the presence of a neutral letter. We show that all
these results go through even in the presence of general Lindström quantifiers. The new
crucial step is Lemma 8.4.6 where we convert a group quantifier to an active domain
formula without introducing any other quantifiers. The proof of this lemma is deferred to
the next section.

8.4.1 Definitions

Let S ⊆ M be any nonempty set. To prove Theorem 8.2.1 we will consider the more
general logic, LS[<,+, {≡q: q > 1}] over the alphabet Σ. In this logic + is a binary
function, and a ≡q b means q divides b − a. We will denote this logic by LS[<,+,≡].
The relations < and ≡q are both definable using +. All languages recognized by this
logic are definable in LS[<,+]. The reason for introducing these new relations is to use
a quantifier elimination procedure.

For the purpose of the proof we assume that the neutral letter language defined by a
formula φ ∈ LS[<,+] is a subset of Σ∗λω, where λ is the neutral letter. The idea is to
work with infinite words, where the arguments are easier, since the variable range is not
bounded by the word length. The results, still hold for finite words.

Definition 8.4.1. The non-neutral letter positions of a word w, denoted by nnp(w) is the
set of all positions where the letter λ does not appear.

nnp(w) = {i | w(i) , λ}

Observe that nnp(w) is also defined with respect to a letter, namely λ.

Let us look at the following example.

Example 8.4.2. Let w = aλλλbaλbλλa. Then nnp(w) = {1, 5, 6, 8, 11}.

Definition 8.4.3. Let X ⊆ N be an infinite set. We say that a formula φ′ is X-weakly
equivalent to a formula φ(x1, . . . , xt) if there exists an infinite set Y ⊆ X, such that for all
words w ∈ Σ∗λω, with nnp(w) ⊆ Y and for all a1, . . . , at ∈N, we have that

w |= φ(a1, . . . , at)⇔ w |= φ′(a1, . . . , at)

In the above definition we say that Y collapse φ to φ′.

82

8.4. PROOF OF THE MAIN THEOREM

We say that a formula φ′ is weakly equivalent to a formula φ(x1, . . . , xt) if for all infinite
subsets X ⊆ N, there exists an infinite set Y ⊆ X, such that for all words w ∈ Σ∗λω, with
nnp(w) ⊆ Y and for all a1, . . . , at ∈N, we have that

w |= φ(a1, . . . , at)⇔ w |= φ′(a1, . . . , at)

In this latter case we say that φ collapses to φ′.

It is clear from the definition that if φ′ is weakly equivalent to φ, then φ′ is X-weakly
equivalent to φ for any infinite set X. The other direction, namely if φ′ is X-weakly
equivalent to φ need not imply that φ′ is weakly equivalent to φ.

We now define a special class of formulas, defined syntactically.

Definition 8.4.4. Let an active domain formula over a letter λ ∈ Σ be a formula where all
quantifiers are of the form: Qm

M x ¬λ(x)〈φ1, . . . , φK〉. That is the variables are quantified
over the “active domain”, the positions which does not contain the letter λ.

Recall from the Preliminaries that Qm
M x ψ〈φ1, . . . , φK〉 stands for the formula Qm

M x 〈φ1 ∧

ψ, . . . , φK ∧ ψ〉. Note that an active domain formula is defined with respect to a particular
letter. Here we use the letter λ ∈ Σ, since the active domain formulas we consider will
always be with respect to the neutral letter of the language. Observe also that an active
domain formula need not always define a language with a neutral letter.

Example 8.4.5. Consider the following formula in FO[+].

∃x ¬λ(x) ∧ ∃y ¬λ(y) ∧ ∃z ¬λ(z) ((a(x) ∧ b(y) ∧ c(z)) ∧ x = y + z)

Clearly it is an active domain formula but does not define a language with a neutral letter.

We will later see that if the only relation is a linear ordering, then the active domain
formulas define a logic with a neutral letter.

The positions in a word which the quantifiers in an active domain formula access are
going to be positions which have a non-neutral letter in it.

8.4.2 The Proof

This subsection follows the proof outline as given in Figure 9.

We first show that any formula φ ∈ LS[<,+,≡] will be weakly equivalent to an active
domain formula φ′ ∈ LS[<,+,≡]. The results by Benedikt and Libkin [BL00b], and Roy
and Straubing [RS07] show that for all formulas φ ∈ Lmod∪{U1}[<,+,≡] there exists an
active domain formula φ′ in that logic, such that for all words w ∈ Σ∗λω, w � φ⇔ w � φ′.
They assume no restriction on the non-neutral positions of w. Observe that our collapse

83

8.4. PROOF OF THE MAIN THEOREM

result is different from theirs. We prove that if we consider only words, whose non-neutral
positions come from a particular subset of N, then φ ∈ LS[<,+,≡] is equivalent to an
active domain formula φ′ ∈ LS[<,+,≡]. In other words, we are not concerned about
the satisfiability of those words whose non-neutral positions are not from that particular
subset.

Let us first consider formulas with an outermost group quantifier, G ∈ S.

Lemma 8.4.6. Let φ = Qm
Gz〈φ1, . . . , φK〉 be in LS[<,+,≡]. Let us assume that there

exists active domain formulas φ′1, . . . , φ′k in the same logic such that for all i ≤ K we have
φi is weakly equivalent to φ′i .
Then φ is weakly equivalent to an active domain formula φ′ ∈ LS[<,+,≡].

The proof of Lemma 8.4.6 will be given in Section 8.5. Benedikt and Libkin [BL00b]
give a similar theorem for the monoid U1 (the existential quantifier).

Lemma 8.4.7 ([BL00b]). Let φ = Q1
U1

z〈φ1〉 be a formula in LS[<,+,≡]. Let us assume
that the formula φ1 is weakly equivalent to an active domain formula φ′1 in the same logic.
Then φ is weakly equivalent to an active domain formula φ′ ∈ LS[<,+,≡].

The following theorem proves the first step of our 3 step proof strategy of Figure 9.

Theorem 8.4.8. Let φ ∈ LS[<,+,≡]. Then there exists an active domain formula φ′ ∈
LS[<,+,≡] such that φ is weakly equivalent to φ′.

Proof. Let φ ∈ LS[<,+,≡]. We first claim that we can convert φ into a formula which
uses only groups and U1 as quantifiers. This follows from the Krohn-Rhodes decomposi-
tion theorem for monoids that every monoid can be decomposed into block products over
groups and U1. This decomposition can then be converted back into a formula using the
groups and U1 as quantifiers [Str94].

So without loss of generality we can assume φ has only group or U1 quantifiers. Now we
prove by induction on the quantifier depth. For the base case, let φ be a quantifier free
formula. It is an active domain formula and therefore the claim holds. Let the claim be
true for all formulas with quantifier depth < d. Lemma 8.4.6 and Lemma 8.4.7 show that
the claim is true for formulas of type φ = Qm

Mz〈φ1, . . . , φK〉 with quantifier depth d, when
M is a group or U1 respectively. We are now left with proving that the claim is closed
under conjunction and negation. So assume that formulas φ1, φ2 is weakly equivalent to
φ′1, φ′2 respectively. That is, for all X ⊆ N, there exist Rφ1 ⊆ X,Rφ2 ⊆ Rφ1 such that Rφ1

is weakly equivalent to φ1 to φ′1 and Rφ2 collapses φ2 to φ′2. Then it is easy to see that Rφ2

collapses φ1 ∧ φ2 to φ′1 ∧ φ
′
2 and Rφ1 collapses ¬φ1 to ¬φ′1. �

We have shown above that all formulas in LS[<,+,≡] can be collapsed to active domain
formulas. Now using a Ramsey type argument we obtain that addition is useless, giving us
a formula in LS[<]. This corresponds to the second step in our three step proof strategy.

84

8.4. PROOF OF THE MAIN THEOREM

Let R be any set of relations on N and let φ(x1, . . . , xt) be an active domain formula in
LS[R]. Let X ⊆N be an infinite set. Then there exists a formula φ′ in LS[<] such that φ
is X-weakly equivalent to φ′.

Weak equivalence for first order logic has been considered by Libkin [Lib04], where the
notion of weak equivalence is known as Ramsey property. We show that this result can be
extended to our logic.

Theorem 8.4.9. Let R be a set of relations on N. Let X ⊆N be an infinite set. Then every
active domain sentence in LS[R] is X-weakly equivalent to an active domain formula in
LS[<].

Proof. Let φ ∈ LS[R] be an active domain sentence. We now prove by induction on the
structure of the formula. Let P(x1, . . . , xk) be a term in φ. Consider the infinite complete
hypergraph, whose vertices are labeled by numbers from X and whose edges are all k
tuple of vertices. Let P(a1, . . . , ak) be true, for a1, . . . , ak ∈ X and let the order type of
a1, . . . , ak be o. Then we color the edge (a1, . . . , ak) by the quantifier free formula on
x1, . . . , xk which describes the order type o. For example, if the order type is a2 = a3 <

a1 < · · · < ak, then the formula will be x2 = x3 < x1 < · · · < xk. Observe that an edge
can have multiple colors but the total number of different colorings possible is dependent
only on k (a constant). Ramsey theory, now gives us that there exists an infinite set Y ⊆ X,
such that the induced subgraph on the vertices in Y will have a monochromatic color, ie.
all the edges will be colored using the same color or in other words, there exists an order
type which is true for all the edges in this subgraph. Let us assume that the edges in Y are
colored x1 < x2 < · · · < xk. Then for all a1, . . . , at ∈ Y

a1, . . . , at |= P(x1, . . . , xk)⇔ a1, . . . , at |= x1 < x2 < · · · < xk

This shows that P(x1, . . . , xk) satisfies the Ramsey property and thus all atomic formulas
satisfy the Ramsey property. We now show that Ramsey property is preserved while tak-
ing Boolean combination of formulas. Consider the formula φ1(x1, . . . , xk)∧φ2(x1, . . . , xk).
We know that by induction hypothesis there exists a formula ψ1 and an infinite set X such
that for all a1, . . . , ak ∈ X, w |= φ1(a1, . . . , ak)⇔ w |= ψ(a1, . . . , ak). We can now find an
infinite set Y ⊆ X and a formula ψ2 such that the Ramsey property holds for the formula
φ2. Therefore for all a1, . . . , ak ∈ Y

w, a1, . . . , ak � φ1 ∧ φ2 ⇔ w, a1, . . . , ak � ψ1 ∧ ψ2

Similarly we can show that the Ramsey property holds for disjunctions and negations. We
need to now show that active domain quantification also preserves Ramsey property. So
let X be an infinite subset of N and let

φ(~x) = Qm
Mz ¬λ(z) 〈φ1(z, ~x), . . . , φK(z, ~x)〉

be a formula in LS[R]. By induction hypothesis we know that there exists an infinite set
Y1 ⊆ X and an active domain formula ψ1 ∈ L[<] such that for all ~a ∈ Y t

1 the Ramsey
property is satisfied. That is w |= φ1(~a) ⇔ w |= ψ1(~a). Now for φ2, using the infinite set

85

8.4. PROOF OF THE MAIN THEOREM

Y1 we can find an infinite set Y2 ⊆ Y1 and a formula ψ2 satisfying the Ramsey property.
Continuing like this will give us a set YK and formulas ψ1, . . . ,ψK such that ∀ j ≤ K and
for all w ∈ Σ∗λω with nnp(w) ⊆ YK , we have that ∀b ∈ YK ,~a ∈ Y t

K , w � φ j(b,~a) ⇔ w �
ψ j(b,~a). Hence we also have that ∀ j ≤ K

{b ∈ YK | w � φ j(b,~a)} = {b ∈ YK | w � ψ j(b,~a)}

Therefore for the formula ψ = Qm
Mz ¬λ(z) 〈ψ1, . . . ,ψK〉, we have ∀w where nnp(w) ⊆ YK

and a1, . . . , at ∈ YK that

w � φ(a1, . . . , at)⇔ w � ψ(a1, . . . , at)

Observe that ψ is an active domain formula in LS[<]. �

We continue with the third step of our three step proof strategy.

Lemma 8.4.10. Every active domain sentence inLS[<] defines a language with a neutral
letter.

Proof. Let φ ∈ LS[<] be an active domain formula over letter λ ∈ Σ. That is, all quan-
tifiers are relativized over ¬λ(x). Let w ∈ Σω. Let w′ ∈ Σω got by inserting letter λ in
w at arbitrary positions. Let n1 < n2 < . . . belong to nnp(w) and m1 < m2 < . . . be in
nnp(w′). Let ρ : nnp(w) → nnp(w′) be the bijective map ρ(ni) = mi. We show that for
any subformula ψ of φ and any ~t ∈ nnp(w)s, we have that w,~t � ψ ⇔ w′, ρ(~t) � ψ. Since
the variables quantify only over the active domain, the claim holds for the atomic formula
x > y, because ni > n j iff ρ(ni) > ρ(n j) for any i, j. Similarly the claim also hold for all
other atomic formulas x < y, x = y and a(x) for an a ∈ Σ. The claim remains to hold un-
der conjunctions, negations and active domain quantifications. Hence w |= φ ⇔ w′ |= φ.
This proves that λ is a neutral letter for L(φ). �

Now we can prove our main theorem. This step shows that if an active domain formula
φ′ ∈ LS[<] is X-weakly equivalent to a formula φ ∈ LS[<,+] then φ′ is infact equivalent
to φ.

Proof of Theorem 8.2.1. Let φ ∈ LS[<,+], such that L(φ) is a language with the neutral
letter, λ. By Theorem 8.4.8 there exists an active domain sentence φ′ ∈ LS[<,+,≡] and
a set R ⊆∞ N such that R collapses φ to φ′. Theorem 8.4.9 now gives an active domain
formula ψ ∈ LS[<] and an infinite set Y ⊆∞ R such that ψ is Y-weakly equivalent to
φ′. We now show that L(φ) = L(ψ). Let w ∈ Σ∗λω. Consider the word w′ ∈ Σ∗λω got
by inserting the neutral letter λ in w in such a way that nnp(w′) ⊆ Y . Since L(φ) is a
language with a neutral letter we have that w |= φ ⇔ w′ � φ. From Theorem 8.4.8 and
Theorem 8.4.9 we get w′ � φ⇔ w′ � φ′ ⇔ w′ � ψ. Finally as shown in Lemma 8.4.10, ψ
defines a language with a neutral letter and hence w′ |= ψ⇔ w |= ψ. �

86

8.5. PROOF OF LEMMA 8.4.6

8.5 proof of lemma 8.4.6

In this section we replace a group quantifier by an active domain formula. Here we make
use of the fact that we can a priory restrict our domain as shown in the previous section.

Recall that φ = Qm
Gz〈φ1, . . . , φK〉 and G = {m1, . . . , mK , 1}. Let X ⊆ N be an arbitrary

infinite set. We show that there exists an infinite set Rφ ⊆ X and an active domain formula
φ′ ∈ LS[<,+,≡] such that Rφ collapse φ to φ′. By the assumption of the Lemma, we
know that for all i ≤ K, there exists active domain formulas φ′i such that φi is weakly
equivalent to φ′i . Therefore there exists an infinite set Rφ1 ⊆ X such that for all words w
where nnp(w) ⊆ Rφ1 we have that w |= φ1 ⇔ w |= φ′1. Similarly we can find infinite
sets RφK ⊆ RφK−1 ⊆ · · · ⊆ Rφ1 ⊆ X such that for all i ≤ K, and for all words w where
nnp(w) ⊆ RφK , we have that w |= φi ⇔ w |= φ′i . So without loss of generality we assume
φis are active domain formulas. In this section, we will find an active domain formula φ′

and an infinite set Rφ ⊆ RφK , such that φ is weakly equivalent to φ′.

Before we go in the details we will give a rough overview of the proof idea. The group
quantifier evaluates the product

∏
j u(j), where u(j) is a group element that depends on

the set of i such that w, j |= φi. So we start and analyze the sets Ji = { j | w, j |= φi}. Since
the formulas φis are active domain formulas, we will see that there are certain positions
in the word called “boundary points” which are crucial. We see that in between two
boundary points, the set Ji is periodic. In the construction of the active domain formula
for φ we show how to iterate over these boundary points in a strictly increasing order.
An active domain quantifier can only iterate over active domain positions, hence we will
need nested active domain quantifiers, and a way how to “encode” the boundary points by
tuples of active domain positions in a unique and order preserving way. Additionally we
need to deal with the periodic positions inside the intervals, without being able to compute
the length of such an interval, or even check if the length is zero. Here will make use of
the inverse elements that always exist in groups.

We start by analyzing the intervals which occur. Since we consider a fixed set S for the
rest of the paper, we will write L[<,+] for the logic LS[<,+, 0, {≡q: q > 1}].

8.5.1 Intervals and Linear Functions

We first show that every formula ψ with at least one free variable has a normal form.
This step is a standard procedure in Presburger’s quantifier elimination technique [Pre29,
End72].

Lemma 8.5.1. Let ψ(z) ∈ L[<,+]. Then there exists a formula ψ̂(z) ∈ L[<,+] such that
ψ is equivalent to ψ̂, where all atomic formulas in ψ̂ with z are of the form z > ρ, z =
ρ, z < ρ, z ≡n ρ, where ρ is a linear function on variables other than z.

87

8.5. PROOF OF LEMMA 8.4.6

Proof. Terms in our logic are expressions of the form

α0 + α1x1 + · · ·+ αsxs , where αi ∈N

and atomic formulas are of the form

σ = γ,σ < γ,σ > γ,σ ≡m γ, c(σ)

whee σ, γ are linear functions, c ∈ Σ and m > 1.
Now using any M ∈ S, where m1 ∈ M is not the identity element, we can rewrite c(σ) by
an equivalent formula

Qm1
M x ¬λ(x)〈(x = σ) ∧ c(x), f alse, . . . , f alse〉

Now consider the atomic formulas containing the free variable z in ψ(z). By multiplying
with appropriate numbers, we can re-write these atomic formulas as nz = ρ, nz < ρ, nz >
ρ, nz ≡l ρ for one particular n, which is the least common multiple (lcm) of all the co-
efficients in ψ. Here ρ does not contain z and also it might contain subtraction. That is
nz = ρ might stand for nz + ρ1 = ρ2. Now we replace nz by z and conjunct the formula
with z ≡n 0. �

For any formula ψ(z), the notation ψ̂(z) denotes the normal form as in Lemma 8.5.1. Let
x1, . . . , xs be the bounded variables occurring in φ̂i(z) and y1, . . . , yr be the free variables
other than z in φ̂i(z). Hence the terms ρ that appear in the formula φ̂i(z) can be identified
as functions, : Ns+r →N.

We collect all functions ρ(~x,~y) that occur in the formulas φ̂i(z) for an i ≤ K:

R = {ρ | where ρ is a linear term occurring in φ̂i(z), i ≤ K}

We define the set T of offsets as a set of terms which are functions using the variables
y1, . . . , yr as parameters:

T = {ρ(0, . . . , 0, y1, . . . , yr) | ρ ∈ R} ∪ {0}

Consider the set of absolute values of all the coefficients appearing in one of the func-
tions in R. Let α′ ∈ N be the maximum value among these. That is α′ = max{|γ| |
f ∈ R, γ is a coefficient in f }. Let ∆ = s · α′. Now we can define our set of extended
functions. For a t ∈ T we define a set of terms which are functions using the variables
x1, . . . , xs, y1, . . . , yr as parameters:

Ft =
{ s′∑

i

αixi + t | s′ ≤ s,−∆ ≤ αi ≤ ∆,αi ∈N
}
.

We denote by F = ∪t∈T Ft.

For a fixed word w ∈ Σ∗λω and a fixed assignment of the free variables ~y to ~a we let

Bw,~a = { f (~d,~a) | t ∈ T , f ∈ Ft, ~d ∈ nnp(w)s′ , d1 > d2 > · · · > ds′}

88

8.5. PROOF OF LEMMA 8.4.6

be the set of boundary points. Note that the assignments to the functions are of strictly
decreasing order. Let

b1 < b2 < . . . < bl

be the boundary points in Bw,~a. Then the following sets are called intervals:

(0, b1), (b1, b2), . . . , (bl−1, bl), (bl,∞)

Here (a, b) = {x ∈ N | a < x < b} and (bl,∞) is called the infinite interval . We also
split the set of points in Bw,~a depending on the offset

Bw,~a
t = { f (~d,~a) | f ∈ Ft, ~d ∈ nnp(w)s′ , d1 > d2 > · · · > ds′}.

We fix a word w ∈ Σ∗λω and an ~a ∈Nr. Therefore we drop the superscripts in Bw,~a (Bw,~a
t)

and call them B (Bt). Figure 10 illustrates some of the definitions.

d1 d2

Figure 10: The up arrows point to the active domain and the boxes are the boundary
points, Bw,~a. We have marked two points d1 and d2 in the same interval. All points in an
interval have the neutral letter.

The following lemma shows that all points the linear terms in φ̂is point to are in B.

Lemma 8.5.2. {ρ(d1, . . . , ds,~a) | ρ ∈ R, di ∈ nnp(w)} ∪ nnp(w) ⊆ B

Proof. Let S = {ρ(d1, . . . , ds,~a) | ρ ∈ R, di ∈ nnp(w)} ∪ nnp(w). Since ρ(x1) = x1 is in
F0 ∈ F, we have nnp(w) ⊆ B. Let b ∈ S . Then there is a function ρ =

∑s′
i αixi + t(~y) in

Ft and values p1, . . . , ps′ ∈ nnp(w) such that b = ρ(p1, . . . , ps′ ,~a). Let p′1 > p′2 > · · · >
p′l be the ordered set of all pis in the above assignment. We let ρ′(x1, . . . , xl) =

∑
i βixi + t,

where βi =
∑

j:p j=p′i
α j. Therefore b = ρ′(p′1, . . . , p′l). Since |βi| ≤ ∆ · s we have ρ′ ∈ Ft

and hence b ∈ Bt. �

Let us try to understand the definitions and the lemma seen above. Note that all the quan-
tifiers in φ̂is are active domain quantifiers. Thus the bounded variables in φ̂is will only be
evaluated at the active domain points in w. Now consider a linear term ρ(x1, . . . , xs, y1, . . . , yr)
present in one of the φ̂is. Observe that once we assign the free variables to ~a, then the
bounded variables x1, . . . , xs will run over all the active domain points in w. We there-
fore look at all the points ρ points to, if its bounded variables x1, . . . , xs are assigned
values from nnp(w). The importance of these points will be clear once we see Lemma
8.5.3. Lemma 8.5.2 shows that all such points are infact inside the set B. That is B

89

8.5. PROOF OF LEMMA 8.4.6

over-approximates the set of points we want. Lemma 8.5.3 also shows that the over-
approximation also preserves the properties we are looking for. Later we will see that this
over-approximation is more suitable to build active domain formulas which are weakly
equivalent to φ.

Let q be the lcm of all q′ where ≡q′ occurs in one of the φis. We need the following lemma,
that inside an interval with only neutral letters, the congruence relations decide the truth
of an active domain formula.

Lemma 8.5.3. For the fixed word w and a1, . . . , ar ∈ N and let c, d ∈ N belong to the
same interval in Bw,~a such that c ≡q d. Then for all i ≤ K: w, c � φi(z,~a) ⇔ w, d �
φi(z,~a).

Proof. Proof is by induction on the structure of the formula φ̂i (that is the normal form
of φi). We will now show that ∀bi ∈ nnp(w) and all subformulas ψ(z, ~x,~y) of φ̂i that
w, c,~b,~a � ψ ⇔ w, d,~b,~a � ψ. The atomic formulas of φ̂i(z,~a) are of the following form:
z < ρ(~x,~a), z = ρ(~x,~a), z > ρ(~x,~a), z ≡q′ ρ(~x,~a), a(z) and formulas which does not
depend on z. It is clear that the truth of formulas which does not depend on z, a(z) and
z ≡q′ ρ does not change whether we assign c or d to z. For example, w, c |= a(z) ⇔
w, d |= a(z), since inside an interval we see only the neutral letter. Let ~b ∈ nnp(w)s. By
Lemma 8.5.2 we know that ρ(~b,~a) is in B and since c, d lies in the same interval it follows
that c < ρ(~b,~a) ⇔ d < (~b,~a). Similarly we can show that the truth of z > ρ, z = ρ does
not change on z being assigned c or d. Thus we have that the claim holds for atomic
formulas. The claim clearly holds for conjunction and negation of formulas. Now let the
claim hold for subformulas ψ1, . . . ,ψK . Therefore ∀i ≤ K we have that {~b ∈ nnp(w)s |

w, c,~b,~a � ψi} = {~b ∈ nnp(w)s | w, d,~b,~a � ψi}. Therefore we have that

w, c, b2, . . . , bs,~a � Qm
M x ¬λ(x)〈ψ1, . . . ,ψK〉

⇔ w, d, b2, . . . , bs,~a � Qm
M x ¬λ(x)〈ψ1, . . . ,ψK〉

And hence it is closed under active domain quantification. �

The above lemma says that the two points d1 and d2 in Figure 10 satisfy the same set
of formulas φi if d1 ≡q d2. In other Lemma 8.5.3 says that inside an interval, only the
congruence relations can change the satisfiability of the φis. Thus, it is enough to know
the truth values of φi at a distance of ≥ q from the boundary points, since the truth values
inside an interval are going to repeat after every q positions. Figure 11 give a pictorial
representation.

The following Lemma deals with the infinite interval.

Lemma 8.5.4. Let b belong to the infinite interval and ~a ∈Nr. If w,~a � φ then w, b,~a 2 φi
for any i ≤ K.

Proof. Let i ≤ K and b be in the infinite interval and w, b,~a � φi. From Lemma 8.5.3 we
know that all points c ≡q b and such that c is also in the infinite interval will be witnesses
for φi. This means the set of witnesses is infinite and hence w,~a 2 φ. �

90

8.5. PROOF OF LEMMA 8.4.6

Let us first understand the importance of Lemma 8.5.3 and 8.5.4. Recall from the Pre-
liminaries (Chapter 2) that we denoted by Γ(w, i) the group element at position i. That
is

Γ(w, i) = m j iff w,~a |= φ j ∧
∧
l< j

¬φl

For a b ∈ B, we define the function IL(b) to be the length of the interval to the left of b.
That is if (b′, b) form an interval then IL(b) = b − b′ − 1. Similarly we define IR(b) to
be the length of the interval to the right of b. Let W = q|G|. We now define two group
values.

Post(b) =

u(b + 1)u(b + 2) . . . u(b + IR(b)) if IR(b) < W

u(b + 1)u(b + 2) . . . u(b + r)

if IR(b) ≥ W and r < W, b + r ≡W 0

Pre(b) =

1G if IL(b) < W

u(b − r + 1) . . . u(b − 1)

if IL(b) ≥ W and r < W, b − r ≡W 0

We define
N0(b) = Pre(b).u(b).Post(b)

The Figure 11 shows the important points around the boundary points. The following

active domain

q|G|

boundary points

Figure 11: The only points of interest in a word are a fixed area around the boundary
points (shaded area shown here). The length between the nshaded area is congruent to
W = q|G|.

Lemma shows that a finite interval around the boundary points are the “only” points of
interest to us.

Lemma 8.5.5. Let us assume that for all i ∈ N in the infinite interval, Γ(w, b) = 1G.
Then

∞∏
i=1

Γ(w, i) =
∏
i∈B

N0(i)

Proof. Let b0 < b1 < · · · < bx be the positions in B. Then
bx∏

b=b0

N0(b) = Pre(b0)u(b0)

 x−1∏
i=0

Post(bi)Pre(bi+1)u(bi+1)

 Post(bx) (7)

Now consider an interval (bi, bi+1). We show that Post(bi)Pre(bi+1) =
∏bi+1−1

j=bi+1 Γ(w, j).
There are two cases to consider

91

8.5. PROOF OF LEMMA 8.4.6

• Case bi+1 − bi < W: Then

Post(bi)Pre(bi+1) =
(
Γ(w, b+ 1)Γ(w, b+ 2) . . . Γ(w, b+ IR(b))

)
(1G) =

bi+1−1∏
j=bi+1

Γ(w, j)

• Case bi+1−bi ≥ W: Let s, t ∈N, be such that s, t < W and bi + s ≡W bi+1− t ≡W 0.
Lemma 8.5.3 shows that inside an interval all positions congruent modulo q satisfy
the same formulas and hence the product of group elements of any W = q|G| con-
secutive positions evaluate to the identity element. This is because; q consecutive
positions evaluate to a group element say m. Since W = q|G| we have that m is gen-
erated |G| times and m|G| gives the identity element 1G (See Preliminaries Chapter
2). Therefore u(bi + s + 1)u(bi + s + 2) . . . u(bi+1 − t) = 1G. So

Post(bi)Pre(bi+1) =
(
Γ(w, bi + 1)Γ(w, bi + 2) . . . Γ(w, bi + s)

)(
Γ(w, bi+1− t+ 1) . . . Γ(w, bi+1−1)

)
=

bi+1−1∏
j=bi+1

Γ(w, j)

Now substituting the value of Post(bi)Pre(bi+1) for all i < x on equation 7 will give us
the claim. �

We view N0(b) as a group value at a point b. Observe that the cardinality of B is finite,
even though it might depend on the length of the word w. The following lemma helps us
understand when does w be a model of φ. Recall that φ = Qm

Gz〈φ1, . . . , φK〉.

Lemma 8.5.6.

w,~a |= φ⇔
∏
i∈B

N0(i) = m and for all b in the infinite interval Γ(w, b) = 1G

Proof. (⇒) : Since w |= φ(~a) we have by Lemma 8.5.4 that for all b in the infinite
interval Γ(w, b) = 1G. Then the claim follows from Lemma 8.5.5.
(⇐) : Let the right side be true. Then by Lemma 8.5.5 we have that

∏∞
i Γ(w, i) = m.

The claim now follows from the definition of the group quantifier. �

So it remains to show that there exists an active domain formula which can multiply the
group values N0(i) in the correct order and also that there exists an active domain formula
to check whether u(b) = 1, for all b in the infinite interval. The major part of the work
is in showing the former. For this we need to go through the points in B in an increasing
order. The rest of the proof demonstrates

1. How we can treat each Bt differently.

2. There is an active domain formula which goes through the points in Bt in an increas-
ing order

92

8.5. PROOF OF LEMMA 8.4.6

8.5.2 Treating each Bt differently

Recall the definition of N0(b) from the previous section.

Our aim is to give an active domain formula such that the formula evaluates to true iff the
group element

∏
i=0 Γ(w, i) is equal to m. The rest of this subsection will be devoted to

computing this product in a way which helps in building an active domain formula.

Let b < b′ be boundary points in B. Below we compute
∏b′−1

i=b N0(i) in a different way:

b′−1∏
i=b

N0(i) =
∏
i≥b

N0(i)

∏
i≥b′

N0(i)

−1

.

Observe that we can compute the product of the interval using two terms that both need
to know only one boundary of the interval. It becomes simpler if we note that the two
products do not really need to multiply all the elements Γ(w, i), for i ≥ b′ but simply
agree on a common set of elements to multiply.

g1

d1

g2

d2

g3

d3

B1 boundary points

h1 h2 h3 h4 h5 h6

B2 boundary points

Figure 12: Boundary points and group values there.

The following example will help us understand the method better. Consider Figure 12.
The arrows point to boundary points. The bold arrows point to the boundary points B1
and the dashed arrows point to the boundary points B2. Consider the point marked d1 and
our aim is to compute the product of the group elements to the right of it. We compute
the product in the following way.

• nd1 = Product of group elements in B2 > d1 = h2.h3.h4.h5.h6.

• nd2 = Product of group elements in B2 > d2 = h3.h4.h5.h6.

• nd3 = Product of group elements in B2 > d3 = h5.h6.

• md1 = (Group element at d1)×nd1= g1.h2.h3.h4.h5.h6.

• md2 = n−1
d2
×(Group element at d2) ×nd2 = (h3.h4.h5.h6)

−1g2(h3.h4.h5.h6).

• md3 = n−1
d3
× (Group element at d3) ×nd3 = (h5.h6)

−1g3(h5.h6)

• md1 .md2 .md3 gives product of group elements in interval [d1,∞) = g1.(h1).g2.(h3.h4).g3.(h5.h6).

93

8.5. PROOF OF LEMMA 8.4.6

In the above example we inductively assumed that, starting from any point d1, we know
the product

∏
i∈B2,i>d1 Γ(w, i). We show that if we can go through the boundary points in

B1 in an increasing order, then we can compute the product of the group elements at both
B1 and B2.

We now formalize the above idea. Firstly we define functions which computes the product
of the group values for the set Bt1 .

N1(b) =
∏

b′∈Bt1
b′≥b

N0(b′)

N̂1(b) =
∏

b′∈Bt1
b′>b

N0(b′)

Note that N1(b) computes the product of group values at positions greater than or equal to
b, whereas N̂1(b) computes the product of group values strictly greater than b. Inductively
we define, for all k, such that 1 ≤ k ≤ |T |.

Nk(b) = Nk−1(b)
∏

b′∈Btk
b′≥b

(Nk−1(b′))
−1 N0(b′)N̂k−1(b′)

N̂k(b) = N̂k−1(b)
∏

b∈Btk
b′>b

(Nk−1(b′))
−1 N0(b′)N̂k−1(b′)

The following lemma shows that Nk(b) computes the product of group values at positions
in ∪ j≤kBt j , which are greater than or equal to b. On the other hand N̂k(b) computes the
product of group values at positions in ∪ j≤kBt j which are strictly greater than b.

Lemma 8.5.7. Let k be such that 1 ≤ k ≤ |T |. Let b ∈N. Then

Nk(b) =
∏
d≥b

d∈∪ j≤kBt j

N0(d)

N̂k(b) =
∏
d>b

d∈∪ j≤kBt j

N0(d)

Proof. We prove both the equations by induction over k. The base case, that is when
k = 1 is true by the definition of N1(b). So let us assume that the claim is true for k − 1.

94

8.5. PROOF OF LEMMA 8.4.6

Then, we have for a b ≤ b′.

Nk−1(b). (Nk−1(b′))
−1 =

∏
d≥b

d∈∪ j<kBt j

N0(d)

 .

∏
d≥b′

d∈∪ j<kBt j

N0(d)

−1

=
b′−1∏
d=b

d∈∪ j<kBt j

N0(d) (8)

For a b < b′ we also have that.

N̂k−1(b). (Nk−1(b′))
−1 =

∏
d>b

d∈∪ j<kBt j

N0(d)

 .

∏
d≥b′

d∈∪ j<kBt j

N0(d)

−1

=
b′−1∏
d>b

d∈∪ j<kBt j

N0(d) (9)

We need to now prove the second equality. Let b ≤ b0 < b1 < · · · < bx−1 < bx be all
positions in Btk . Writing out the product we get

Nk(b) = Nk−1(b) (Nk−1(b0))
−1

 x−1∏
i=0

N0(bi) N̂k−1(bi) (Nk−1(bi+1))
−1

 N0(bx)N̂k−1(bx)

Substituting the equations 8 and 9 in the above equation gives us the following formula.

Nk(b) =

b0−1∏
d=b

d∈∪ j≤kBt j

N0(d)

x−1∏
i=0

N0(bi)

bi+1−1∏

d>bi
d∈∪ j≤kBt j

N0(d)

(
N0(bx)N̂k−1(bx)

)

=
∏
d≥b

d∈∪ j≤kBt j

N0(d)

Similarly we get that

N̂k(b) = N̂k−1(b) (Nk−1(b0))
−1

 x−1∏
i=0

N0(bi) N̂k−1(bi) (Nk−1(bi+1))
−1

 N0(bx)N̂k−1(bx)

=

b0−1∏
d>b

d∈∪ j≤kBt j

N0(d)

x−1∏
i=0

N0(bi)

bi+1−1∏

d>bi
d∈∪ j≤kBt j

N0(d)

(
N0(bx)N̂k−1(bx)

)

=
∏
d>b

d∈∪ j≤kBt j

N0(d)

Thus the claim is true for all k. �

95

8.5. PROOF OF LEMMA 8.4.6

Observe that in the above lemma Nk(b) compute the product of group elements at posi-
tions greater than or equal to b in the set ∪ j≤kBt j , whereas N̂k(b) compute the product of
group elements at positions strictly greater than b in the set ∪ j≤kBt j .

The following Lemma shows that N|T |(1) gives the product of the group elements.

Lemma 8.5.8. We have that N|T |(1) =
∏

i∈B N0(i).

Proof. This follows from Lemma 8.5.7. �

We now give active domain formulas γm, m ∈ G, such that γm is true iff N|T |(1) = m.
For this we make use of the inductive definition of Nk and show that there exists active
domain formulas γm such that w |= γm(b) ⇔ Nk(b) = m. Similarly we give active
domain formulas γ̂m such that w |= γ̂m(b) ⇔ N̂k(b) = m. Observe that Nk(b) is got by

computing the product of
(
N̂k−1(b′)

)−1
u(b′)Nk−1(b′), over b′, where b′ strictly increases.

This requires us to traverse the elements in Btk−1 in an increasing order. The following
section builds a Sorting tree to sort the elements of Btk−1 in an increasing order.

8.5.3 Sorting Tree

Let t ∈ T . The aim of this section is to create a data structure, which can traverse the
elements in Bt in an ascending order. Note that the active domain formulas can only
“access” the active domain of the word. But what we need is to access the boundary
points. We know that if we assign the variables in a linear term to active domain points,
then we can get hold of the boundary point. Thus we can built active domain quantifiers
which can iterate through the active domain points of the word, compute the boundary
point and generate a group value associated at that particular point. So the first “idea”
will be to use active domain quantifiers for all variables appearing in the linear terms. But
can we get the active domain points in an ordered way?

The following example will give an intuition of the problem and the solution.

Example 8.5.9. Consider two linear equations 2y1 + y2 and y1 + 5y2, with the yis being
bounded variables. Thus they get assigned from the active domain of the word. Let the
active domain of a word w be D = {5, 10, 15}. Then the boundary points are

15, 30, 20, 55, 25, 80, 25, 35, 30, 60, 35, 85, 35, 40, 40, 65, 45, 90

if we assign the two variables (y1, y2) from D in the following order:

(5, 5), (5, 10), (5, 15), (10, 5), (10, 10), (10, 15), (15, 5), (15, 10), (15, 15)

Observe that if we follow the particular ordering, then the boundary points, BP is not
generated in the order we would want it to be (since it is not in ascending order). We
also see that there is repetition of occurrences of boundary points. Thus if we generate

96

8.5. PROOF OF LEMMA 8.4.6

the group values in this ordering and compute its product, we would not get the required
product. Since we might be looking at non-commutative groups, we need to ensure that
BP is generated in an ascending order.

Here is the solution we propose. We rename the variables and generate the following
linear terms:

ρ1 = 2x1 + x2, ρ2 = x1 + 2x2, ρ3 = x1 + 5x2, ρ4 = 5x1 + x2

The first and third got by replacing y1 by x1 and y2 by x2. The second and fourth are got
by replacing y1 by x2 and y2 by x1. Now we make use of the fact that we have the leeway
to choose the active domain. We will assume that the active domain points we choose are

“very far” from each other. Thus, for any assignment to the xis such that x1 >> x2 we
have

5x1 + x2 > 2x1 + x2 > x1 + 5x2 > x1 + 2x2

Thus we have an ordering for any fixed assignment of the xis. Now we fix an ordering
among different assignments of xis. Consider Figure 13, where the active domain points
are marked r1, r2, r3. Let us look at one of the linear terms, say ρ1(x1, x2). Then we have

r1 r2 r3

Figure 13: The points marked are the active domain points

ρ1(r3, r3) > ρ1(r3, r2) > ρ1(r3, r1) > ρ1(r2, r2) > ρ1(r2, r1) > ρ1(r1, r1)

since r3 >> r2 >> r1. Note that x1 ≥ x2 always. That is we do not consider the points
generated by x1 < x2. But observe that since ρ1(x1, x2) = ρ2(x2, x1) we will be looking
at all the boundary points, even if we restrict our variables to this ordering.

We generalize the idea in the above example. In general we need to worry about not two,
but a fixed number of linear terms. Also the linear terms might contain variables with
negative co-efficients.

To take care of this general situation, we define a tree called sorting tree, Tt which cor-
responds to the set Bt. The tree satisfies the following property: If the leaves of the tree
are enumerated from left to right, then we get the set Bt in ascending order, provided the
active domain for the word is choosen judiciously. We will first give the construction of
the tree and then the active domain Rφ.

Sorting Tree: A node in Tt is labeled by a tuple (f , A), where f (x1, . . . , xl) is a function
in Ft and A an assignment for the variables in f such that A(x1) > A(x2) > · · · > A(xl)
and ∀i ≤ l : A(xi) ∈ nnp(w).

We show how to inductively built the tree. The root is labeled by the tuple (t, {}), where t is
the function which depends only on ~y (and hence constant on ~x) and {} is the empty assign-
ment. The root is not marked a leaf node. Consider the internal node (f (x1, . . . , xl), A).
It will have three kinds of children ordered from left to right as follows.

97

8.5. PROOF OF LEMMA 8.4.6

1. Left children: These are labeled by tuples of the form (f ′α, A′j) where

f ′α(x1, . . . , xl+1) = f (x1, . . . , xl) + αxl+1 and − ∆ ≤ α < 0,−α ∈N

A′j = A∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w)

The left children are now ordered as follows. The tuple (f ′α1
, A′j1) is on the left of

(f ′α2
, A′j2) if j1 > j2 or if j1 = j2 and α1 < α2.

2. Middle child: It is labeled by the tuple (f ′′, A) where f ′′(x1, . . . , xl) = f (x1, . . . , xl).
It is marked a leaf node.

3. Right children: These are labeled by tuples of the form (f ′α, A′j) where

f ′α(x1, . . . , xl+1) = f (x1, . . . , xl) + αxl+1 and 0 < α ≤ ∆,α ∈N

A′j = A∪ [xl+1 7→ j], where j < A(xl) and j ∈ nnp(w)

The children are now ordered as follows. The tuple (f ′α1
, A′j1) is on the left of

(f ′α2
, A′j2) if j1 < j2 or j1 = j2 and α1 < α2.

Observe that if there is no j such that j < A(xl) and j ∈ nnp(w), then (f , A) will only
have the single child (f ′′, A). The tree is built until all functions with s variables appear
in leaves and hence the depth of the tree is s + 2.

Active domain: The infinite set Rφ ⊆ RφK satisfies the following property: Any two points
a < b in Rφ is such that b ≥ a(4s∆). The idea is to ensure that the active domain points
are “far” enough to satisfy the nice properties we will soon see. Note that there always
exists an infinite set with the above property. We pick any set which satisfies this property
and call it Rφ.

Let us look at the following example. Figure 14 shows part of a tree, where ∆ = 2, t = 0
and nnp(w) = {5, 25, 625}. Note that the values of the leaves of tree is in ascending order.

Let R = 4s∆. Let us also assume that nnp(w) ⊆ Rφ. Given a node (f , A), we say
the value of the node is the function f evaluated under the assignment of A (denoted by
f (A)).

Lemma 8.5.10. Let N be an internal node labeled by a function f (x1, . . . , xl) with l < s
and an assignment A. If A(xl) = n, then the children of this node have values in the range
[f (A) − ∆

R
n, f (A) + ∆

R
n]. Moreover the values of the children increases from left to right.

Proof. The range is given by the construction. Let us look at the tree and the case when
both α1 and α2 are negative. The other cases are similar to this case or are trivial. There
are two cases to consider now. If j1 > j2, then R. j2 ≤ j1. Therefore |α2|. j2 ≤ j1 and since
both the αis are negative we get α2. j2 > α1. j1, which shows that the value of the children
increases from left to right. In the other case, we have that α1 < α2 and j1 = j2. Then it
is obvious that α1. j1 < α2. j2 and therefore the claim is true. �

98

8.5. PROOF OF LEMMA 8.4.6

Figure 14: Sorting Tree: The double circles represent leaves of the tree. The nodes of the
tree are labeled (f , A), where A is an assignment for the function f and t = 0. For better
presentation we only show the assignment to the newly introduced variable in a node. For
example, the tuple (x− 2y, 25) assigns x = 625 and y = 25. The assignment to x is given
in the node’s parent.

Next we show that for any two neighboring nodes in the tree, the values in the leaves of
the subtree rooted at the left node is less than the values in the leaves of the subtree rooted
at the right node. Let V(f ,A) denote the set of values in the leaves of the subtree rooted at
(f , A).

Lemma 8.5.11. Let (f , A) and (f ′, A′) be neighboring nodes of the same parent such
that (f , A) is to the left of (f ′, A′). Then u < v for every u ∈ V(f ,A) and v ∈ V(f ′,A′).

Proof. Let f =
∑l−1

i=1 αixi + αlxl + t and f ′ =
∑l−1

i=1 αixi + α′l xl + t. We show that
the rightmost element, u in V(f ,A) is less than the left most element, v in V(f ′,A′). From
Lemma 8.5.10 and applying induction on the depth of the tree, one can show that u ≤
f (A) + (s − l)∆

R
n and v ≥ f ′(A′) − (s − l)∆

R
n′. Let n = A(xl) and n′ = A′(xl). Let

us assume that both coefficients α′l ,αl > 0. A similar analysis can be given for other
combinations of α′l and αl. Now since (f , A) is the left neighbor of (f ′, A′) we have
n < n′. Then v − u ≥ α′ln

′ − (s − l)∆ n′
R
− αln − (s − l)∆ n′

R
≥ n′ − 3s∆ n′

R
> 0. The claim

follows, since R = 4s∆. �

The next lemma says that the values of the leaves of the tree increases as we traverse from
left to right.

Lemma 8.5.12. Let (f , A) and (f ′, A′) be two distinct nodes such that f (A) < f ′(A′).
Then (f , A) appear to the left of (f ′, A′).

Proof. This follows from Lemma 8.5.11. �

99

8.5. PROOF OF LEMMA 8.4.6

Lemma 8.5.12 shows that if we travel the tree from left to right, then we get the elements
in Bt in an ascending order. The following lemma now shows how to build a formula,
which can use the sorting tree to traverse through the elements in Bt.

Lemma 8.5.13 (Tree Lemma). Let nnp(w) ⊆ Rφ. Fix t ∈ T. Assume that for every b ∈ Bt

we have an element gb ∈ G. For all f ∈ Ft, m ∈ G, ~d ∈ nnp(w)t, ~a ∈ Nr, let γm
f be

active domain formulas such that w, ~d,~a |= γm
f (~x,~y) iff g f (~d,~a) = m. Then there are active

domain formulas Γm′ such that

w,~a |= Γm′(~y) iff
∏
b∈Bt

gb = m′

Proof. We will use the sorting tree, Tt corresponding to Bt for the construction of our
formula. Recall that the nodes are labeled by tuples (f , A), where f is a function and
A is the assignment of the parameters of f . Let V(f ,A) ⊆ Bt be the set of values at the
leaves of the subtree rooted at the node labeled by (f , A), and g(f ,A) =

∏
b∈V(f ,A)

gb.

We will do induction on the depth D of the tree. Let τm,D
f (~x) be a formula such that

w, ~d |= τm,D
f (~x) iff

∏
b∈V

(f ,~d)
gb = m where (f , ~d) is the label of a node that has a

subtree of depth at most D.

Base Case (leaves): We define τm,0
f (~x) = γm

f (~x).

Induction Step: Let us assume that the claim is true for all nodes with a subtree of depth
at most D. Let the node labeled by (f , A) have a subtree of depth D + 1. We will need
to specify the formula τm,D+1

f (~x), where ~x agrees with the assignment A. For every child
(f ′, A′) of (f , A) the depth of the corresponding subtree is less than or equal to D. Hence
we know we have already formulas by induction.

Recall what the children of (f , A) are: They are of form (f ′α, A′j) and (f ′′, A j). Moreover
all nodes (f ′α, A′j), where α is negative, come to the left of (f ′′, A j) and all nodes (f ′α, A′j),
where α is positive, come to its right.

We start by grouping some of the children and computing their product. We let T−(A′j) be
the product of all subtrees labeled by (f ′α, A′j) for α = −∆,−∆+ 1, . . . ,−1. This is a finite

product so we can compute this by a Boolean combination of the formulas τm,D
f ′α

(~x, xl+1).

π−,m,D
f (~x, xl+1) ::=

∨
m−∆...m−1=m

(−1∧
α=−∆

τmα,D
f ′α

(~x, xl+1)

)

Now we want to compute the product
(∏

j∈nnp(w)(T−(A′j))
−1

)−1
which is the product of

the T−(A′j) where j ∈ nnp(w) is decreasing. But this can be computed using an active

domain group quantifier, τ−,m,D
f (~x) as follows:

τ−,m,D
f (~x) = Qm−1

G xl+1
(
¬λ(xl+1) ∧ (xl > xl+1)

)

100

8.5. PROOF OF LEMMA 8.4.6

〈π
−,m−1

1 ,D
f (~x, xl+1), . . . , π

−,m−1
K ,D

f (~x, xl+1)〉

Recall that the elements of group G are ordered m1, . . . , mK . For the single node (f ′′, A)
we already have the formulas τm,D

f ′′ (~x) by induction (here we have ~x since the assignment
A is the same for (f , A) and (f ′′, A)).

Similarly we define formulas π+,m,D
f (~x, xl+1) for the positive coefficients, and compute

their product
∏

j∈nnp(w) T+(A′j) in an increasing order.

π+,m,D
f (~x, xl+1) ::=

∨
m1...m∆=m

(∆∧
α=1

τmα,D
f ′α

(~x, xl+1)

)

τ+,m,D
f (~x) ::= Qm

G xl+1
(
¬λ(xl+1) ∧ (xl > xl+1)

)
〈π+,m1,D

f (~x, xl+1), . . . , π
+,mK ,D
f (~x, xl+1)〉

We have now computed the product of the group elements for the three different groups
of children. So by a Boolean combination over these formulas we get τm,D+1

f (~x):∨
m′m′′m′′′=m

(
τ−,m′,D

f (~x) ∧ τm′′,D
f ′′ (~x) ∧ τ+,m′′′,D

f (~x)
)

So finally we get Γm′ which is same as the formula τm′,s+2
(t,{})

, which is valid at the root of
the tree. �

We can also relativize the formulas Γm′ , with respect to any position.

Lemma 8.5.14. Let the hypothesis of Lemma 8.5.13 hold. Then for all m ∈ G, there are
active domain formulas Γm(z,~y) such that

w, d,~a |= Γm(z,~y) iff
∏
b∈Bt
b≥d

gb = m

Similarly, for all m ∈ G, there are active domain formuals Γm(z,~y) such that

w, d,~a |= Γm(z,~y) iff
∏
b∈Bt
b>d

gb = m

Proof. We will show how to do the first part of the Lemma. We can conjunct all formulas
γm

f , for m , 1G, with the condition z ≥ f (~x,~y). Whereas the formula γ1
f , can be disjuncted

with the formula z ≥ f (~x,~y). Now applying the tree Lemma 8.5.13 will give us the
required formula. �

101

8.5. PROOF OF LEMMA 8.4.6

8.5.4 Constructing the active domain formula

This subsection uses all the previous subsections to build the active domain formula we
are looking for.

First for all m ∈ G, f ∈ F, we give formulas γm
f such that it is true when N0 evaluates to

m.

Lemma 8.5.15. For all m ∈ G, f ∈ F, there are formulas γm
f (~x,~y) such that for all

d1, . . . , ds ∈ nnp(w), we have that

w |= γm
f (
~d,~a)⇔ N0(f (~d,~a)) = m

Proof. For a l ∈N, the following formula checks if there is are points f ′(~x,~y) and f (~x,~y)
such that the difference between them is l.

δl
f (~x,~y) ::=

∨
f ′∈F\ f

Qm1
G ~x′〈 f ′(~x′,~y) = f (~x,~y) + l, f alse, . . . , f alse〉

For an i ≤ K, we denote by φ̃mi(z,~y) the formula
∧

j<i ¬φ j(z,~y) ∧ φi(z,~y).

So we have that IR(b) = l iff δl+1
f ∧

∧
l′<l ¬δ

l
f is true. We define πm,+l

f to be true if the
product of the first l group elements to the right is m.

πm,+l
f (~x,~y) ::=

∨
g0...gl=m

(l∧
i=0

φ̃gi(f (~x,~y) + i,~y)
)

We now give a formula ψPost
f ,m (~x,~y) such that Post(f (~d,~a)) = m iff w |= ψPost

f ,m (~d,~a). Now
we have two cases to consider.
Case IR(b) < W: For each of the case b < b′ such that l = b′ − b < W, the formula πm,l

f
compute the product of the group elements. We define ψm

f to be true if the interval is less
than W and the product of the group elements is equal to m.

ψm
f (~x,~y) ::=

W−1∧
l=1

((
δl

f (~x,~y) ∧
l−1∧

l′=1

¬δl′
f (~x,~y)

)
→ πm,+l

f (~x,~y)
)

Case IR(b) ≥ W: When b′ − b ≥ W we have to compute the product for the first r group
elements, where b + r ≡W 0 and r ≤ W. Therefore we define ψ̂m

f which computes the
product of the group elements equal to m in this case.

ψ̂m
f (~x,~y) ::=

W∧
l=1

(
f (~x,~y) + r ≡W 0

)
→ πm,+r

f (~x,~y)

A Boolean combination over δl
f , ψ̂m

f and ψm
f can give us the formula ψPost

f ,m .

ψPost
f ,m (~x,~y) ::=

W−1∧

l=1

¬δl
f

 =⇒ ψ̂m
f

∨ ψm
f

102

8.5. PROOF OF LEMMA 8.4.6

Similarly we give formulas ψPre
f ,m for all m ∈ G and f ∈ F, such that Pre(f (~d,~a)) = m iff

w |= ψPre
f ,m(

~d,~a).

For all m ∈ G and f ∈ F, the formulas, γm
f (~x,~y) are as follows:

γm
f (~x,~y) ::=

∨
g1g2g3=m

ψPre
f ,g1
∧ φ̃g2 ∧ ψ

Post
f ,g3

�

We know that for every b ∈ B there is a function f ∈ F, d1, . . . , ds′ ∈ nnp(w), such that
b = f (~d,~a), where ~a is the fixed assignment to the variables ~y. We will use this encoding
of a position and define a formula νm

k, f such that

w, ~d,~a |= νm
k, f (~x,~y)⇔ Nk(f (~d,~a)) = m

Similarly we define formulas ν̂m
k, f such that w, ~d,~a |= ν̂m

k, f (~x,~y) iff N̂k(f (~d,~a)) = m. We
show this by induction over k ≤ |T |. Starting with the base case k = 1.

Lemma 8.5.16. Let d1, . . . , ds′ ∈ nnp(w). For each m ∈ G, there is an active domain
formula νm

1, f (~x,~y) in L[<,+], such that if

w |= νm
1, f (

~d,~a)⇔ N1(f (~d,~a)) = m

Similarly there is an active domain formula ν̂m
1, f (~x,~y) in L[<,+] such that if

w |= ν̂m
1, f (

~d,~a)⇔ N̂1(f (~d,~a)) = m

Proof. Consider the set Bt1 of boundary points formed using functions Ft1 . Look at all
the formulas γm

f , where f ∈ Ft1 , given by Lemma 8.5.15. Now we are in a position to
apply Lemma 8.5.14, which gives us the required formulas. �

The induction step follows.

Lemma 8.5.17. Let d1, . . . , ds′ ∈ nnp(w). For each m ∈ G, there is an active domain
formula νm

k, f in L[<,+], such that

w, ~d,~a |= νm
k, f (~x,~y)⇔ Nk(f (~d,~a)) = m

Similarly there is an active domain formula ν̂m
k, f (~x,~y) in L[<,+], such that

w |= ν̂m
k, f (

~d,~a)⇔ N̂k(f (~d,~a)) = m

103

8.5. PROOF OF LEMMA 8.4.6

Proof. For all m ∈ G and f ′ ∈ Ftk we give formulas γm
f ′ such that the following holds:

w, ~d′,~a |= γm
f ′(~x,~y)⇔

(
N̂k−1(b′)

)−1
N0(b′)N̂k−1(b′) = m

Here d′1, . . . , d′s ∈ nnp(w) and f ′(~d′,~a) = b′. By induction hypothesis there exists for-
mulas νm

k−1, f ′ and ν̂m
k−1, f ′ which corresponds to Nk−1(f ′(~x,~y)) and N̂k−1(f ′(~x,~y)) respec-

tively. Taking a Boolean combination over these formulas we get the required formula
γm

f ′ . We now apply our Tree Lemma 8.5.14 which gives us formulas Γm, for all m ∈ G,
such that

w, ~d,~a |= Γm(f (~x,~y),~y)⇔ w |=
∏

b′∈Btk
b′>b

(
N̂k−1(b′)

)−1
u(b′)Nk−1(b′) = m

Taking Boolean combination over Γm and νm
k−1, f will give us the formula νm

k, f . Similarly
we can build active domain formulas ν̂m

k, f (~x,~y), for all m ∈ G. �

The formulas we were looking for are the active domain formulas νm
|T |, f , where f is the

function which outputs the constant 1. The following Lemma now follows.

Lemma 8.5.18. Let nnp(w) ⊆ Rφ. Then∏
b∈B

N0(b) = m⇔ w,~a |= νm
|T |,1(~y)

Proof. From Lemma 8.5.17 it follows that w,~a |= νm
|T |,1 ⇔ Nk(1) = m. The claim now

follows from Lemma 8.5.8. �

Now we are in a position to finish the proof of our main Lemma.

Proof of Lemma 8.4.6. By Lemma 8.5.6 we know that it suffices to compute the product
of N0(b), provided the infinite interval evaluate to identity. From Lemma 8.5.18 we
know that there are active domain formulas νm

|T |,1 ∈ L[<,+] such that N|T |(1) = m iff
w,~a |= νm

|T |,1, provided the active domain of the word w comes from the set Rφ.

We need to do one last thing. Check that the infinite interval evaluates to 1G. Replace all
formulas z > ρ, z < ρ, c(z) for a c , λ and λ(z) by true, f alse, f alse, true respectively in
the formulas φ̂i and call these formulas ψ̂i. There exists a witness in the infinite interval
for the formula φ̂i iff ψ̂i evaluates to true. By Theorem 8.5.4 there should not be any
witness in the infinite interval. Therefore the formula ψ̂ =

∨
i ψi evaluates to true iff the

infinite interval does not evaluate to 1G.

Combining both the formulas, we get that φ′(~y) = ¬ψ̂(~y) ∧ νm
|T |,1(~y) and therefore for all

w, such that nnp(w) ⊆ Rφ and for all ~a ∈Nr we have that

w |= φ(~a)⇔ w |= φ′(~a)

This completes the proof. �

104

8.6. DISCUSSION

8.6 discussion

We have shown that in the presence of a neutral letter the addition relation collapse to
linear ordering no matter what monoid quantifier is being used. All languages definable
using monoid quantifiers and an order predicate, on the other hand, are regular [BIS90].
Now using semigroup theoretic methods we can separate these classes [Str94]. This en-
abled us to show separation between various logics which uses addition and order predi-
cates.

Unfortunately if both addition and multiplication are present, then the collapse does not
happen. It is also interesting to note that non-solvable groups do not show any sur-
prising property if only addition is present, but as we know from Barrington’s theorem
non-solvable groups behave quite differently when both addition and multiplication are
present.

Figure 15 compare the expressiveness of different logics in the presence of only addition
and linear order.

FOgrp[<,+]

FOmod[<,+]

FO[<,+]

mod[<,+] C6[<,+] C2[<,+]

grp[<,+] S 10[<,+] S 5[<,+]

Figure 15: Relation between logics with regular quantifiers and addition relation. The
arrows show strict inclusion. No arrow show that the classes are incomparable. C6 and
C2 denote cyclic groups with 6 and 2 elements respectively and S 10 and S 5 denote sym-
metric groups with 10 and 5 elements respectively. The diagram would be similar if the
only predicate was <. On the other hand, if multiplication is present, the logics behave
differently and many questions remain open.

The ultimate objective is to show non-expressibility results for arbitrary predicates or at
least when both addition and multiplication are present. The fundamental question is to
understand

Open Problem 8.6.1. Is FOmod[<,+,×] a strict subset of FOgroup[<,+,×]?

One possible direction to take this work forward will be to identify the kinds of predicates
where our techniques could be applied. That is

105

8.6. DISCUSSION

Open Problem 8.6.2. Let S be a subset of monoids. Are there numerical predicates, P
such that

LS[<,+, P] ∩NLL = LS[<] ∩NLL?

Another way to look at separating the “natural uniform” versions of the complexity classes
will be to ask whether one can come up with other suitable restrictions on the set of lan-
guages. We saw how restricting the language class to neutral letter languages, help us
come up with lower bound results. Can one come up with better restrictions on the set of
languages? Inside this restricted set of languages can one show addition and multiplica-
tion collapse to order relation? This seems to be the idea Straubing considers in [Str05].
Straubing [Str94] proposes word problems over Regular language as a suitable restric-
tion, while McKenzie, Thomas, Vollmer [MTV10] consider context free languages as a
restriction.

Another interesting question which our result fails to answer is whether word problems
over non-solvable groups can be defined in maj[<,+] [KLR07]? Can our techniques be
of use when working with infinite groups?

Open Problem 8.6.3. Is FOgroup[<,+] a subset of maj[<,+]?

106

9

F O G R P [<,+] S AT I S F I A B I L I T Y

9.1 introduction

We first look at the satisfiability of FO2[<, succ, y = 2x, 1] and then Presburger arithmetic
extended with modulo counting quantifier and finally we look at the satisfiability of the
logic FO2unC[<, succ].

9.2 two variable logic with addition

Here we show that the satisfiability of the logic FO2[<, succ, y = 2x, 1] is undecidable.
We observe first that addition relation in a two variable logic is equivalent to the relation
y = 2x. Hence we show that the logic FO2[<,+] is undecidable.

Theorem 9.2.1. Satisfiability of FO2[<, succ, y = 2x, 1] over words is undecidable.

Proof. We reduce from the undecidability of the emptiness problem of deterministic lin-
ear bounded automata (DLBA) . That is, given a DLBA, M we give a formula αM ∈

FO2[<, succ, y = 2x, 1] such that

∃w M accepts w⇔ αM is satisfiable

Consider a configuration run of M on a word w. Let Γ be the set of all letters which
occur in the configuration run. Therefore there exists a mapping τ ⊆ (Γ3 × Γ3), which
determines for every triple of possible symbols at positions i − 1, i, i + 1, the set of all
valid symbols possible at positions i − 1, i, i + 1 in the next configuration. The alphabet
for αM will be Σ = Γ3 ×P({♦, $, $′}) and hence the models of the formula will be a subset
of Σ∗. Since the models of the formula correspond to a configuration run of the machine
M, we have that every two consecutive triples should satisfy some constraints. That is if
(γ1, γ2, γ3) ∈ Γ3 is present at a location i, then the i + 1th position of the word should
satisfy the tuple (γ2, γ3, γ′), where γ′ ∈ Γ can be arbitrary. Let us denote this constraint
by the “right” relations β ⊆ (Γ3 × Γ3).

107

9.2. TWO VARIABLE LOGIC WITH ADDITION

We now give an encoding for a model which satisfies the relations β, γ and whch has the
final state somewhere. The models for αM are of the form:

ŵ = R0{$, ♦}C0{$′, ♦}R1{$, ♦}C1{$′, ♦}R2...{$, ♦}Cl{$′, ♦}

Here R0 does not contain the symbols ♦ or $ or $′. Infact none of the Ris contain these
symbols. Thus the first occurence of {$, ♦} and {$′, ♦} respectively are unique points in
the word. The initial configuration of the run (denoted by C0 here) lies between these two
points. The following conditions can ensure this.

1. There is a unique position, I such that I is the first position where {$, ♦} is true.

2. There is a unique position, J such that J is the first position where {$′, ♦} is true.

3. J < 2I.

4. For all k ≤ I, the propositions ♦, $, $′ are false.

The configuration run of the DLBA consists of the following sequences C0C1...Cl. Thus
the subwords R0, R1, ..., Rl−1 ∈ Σ∗ do not have any significance as far as the configuration
run is considered. These are “dummy” subwords to help us use our relation y = 2x. Even
inside Ci for all i ≤ l, the only points of importance are those points with the ♦. Thus we
can verify the final state condition as follows.

5. There exists a position with a ♦ and a final state from Γ.

We ensure that all points in C0, our initial configuration has the ♦ and thus correspond
exactly to an initial configuration of the machine M. Any other point j in Ci contains
♦ if and only if j = 2k and k is a point in Ci−1 with ♦. We thus propogate the ♦ to all
configurations. Similarly we propogate the $ and $′ symbols. That is j contains $ symbol
if and only if j = 2k (apart from the initial unique point) and k contains the $ symbol. We
list down these conditions below.

6. For all positions k, such that I ≤ k ≤ J, ♦ is true.

7. For all positions k > J, ♦ is true at k iff k = 2l and ♦ is true in l.

8. For all positions k > J, $ is true at k iff k = 2l and $ is true at l.

9. For all positions k > J, $′ is true at k iff k = 2l and $′ is true at l.

10. All positions with should have exactly one letter from Γ3.

Let us denote by γk to be the kth letter in ŵ restricted to Γ3. That is γk = ŵ[k] ∩ Γ3.
Because of (10), γk ∈ Γ3. We next show how the τ relation is maintained in the configura-
tions.

108

9.2. TWO VARIABLE LOGIC WITH ADDITION

11. Let 2k > J has a ♦ and does not have $ or $′. Then τ(γk, γ2k) should be true.

Now we need to maintain the “right” relation β. For this we also use the points which
are inside the configurations Ci but which do not contain the ♦. These points help us to
transfer the β relation from a point in Ci with ♦ to the next point in Ci with ♦.

12. Let 2k > J has a ♦ and does not have $ or $′. Then γ2k = γ2k−1 and β(γ2k, γ2k+1)
holds.

13. Let ♦ be false at k and k + 1. Then γk+1 = γk.

We claim that if we project the letters from Γ3 in all the positions with the ♦ letter, then
we get the configuration run of the machine M.

Claim 9.2.2. Let ŵ be a word which satisfy all the above conditions. Then ŵ|Γ3 is a
successful configuration run of M.

Proof. The conditions (1) − (4) ensure that the initial configuration is correct. The con-
ditions (6) − (10) ensures that the ♦, $ and $′ are marked correctly. From the conditions
(11), we know that the down relation, τ is respected by the word. The right relations are
tranferred from a state with a ♦, along a path with no ♦ to a state with a ♦. Conditions
(12), (13) ensure that the right relation is respected. Finally condition (5) ensures that
the final state is seen. �

We now show that each of the above conditions can be written in FO2[<, succ, y = 2x, 1].
In the following formula, x is the unique position which satisfy condition (1):

U1(x) := (($(x) ∧ ♦(x) ∧¬$′(x)) ∧ (∀y (y < x) =⇒ ¬$(y) ∧¬♦(x) ∧¬$′(x))

In the following formula, y is the unique position which satisfy condition (2):

U2(y) : ($′(y) ∧ ♦(y)) ∧ (∀x (x < y) =⇒ ¬$′(x))

Using the above formulas we can easily write formulas for conditions (1) − (5). The first
row of the input for the machine M, lies exactly between the first and second unique point.
In the following formula, x is true iff it points to a position in the first row of the input
(between the first and second unique point).

FirstRow(x) := ∃y (y < x ∧U1(y)) ∧ ∃y (y > x ∧U2(y))

Using the above formula we can write Condition (6) as follows: ∀x FirstRow(x) =⇒
♦(x). The following formula is true if x > J the second unique position and contains a ♦.

Con f igPos(x) := ♦(x) ∧ ∃y U2(y) ∧ x > y

Then Condition (7) (Similarly conditions (8) and (9)) can be written as follows.

∀x Con f igPos(x)⇔ (∃y (x = 2y) ∧ ♦(y))

109

9.3. PRESBURGER ARITHMETIC WITH MOD QUANTIFIERS

Let Γ3 = {γ1, γ2, . . . }. Condition (10) is easy to state and Condition (11) can be ex-
pressed as follows.

|Γ3|∨
i=1

∀x (Con f igPos(x) ∧¬$(x) ∧¬$′(x) ∧ γi(x))⇒

∃y (x = 2y) ∧
∨

(γ j,γi)∈τ

γ j(y)

Condition (12) can be expressed as follows.

|Γ3|∨
i=1

∀x (Con f igPos(x) ∧¬$(x) ∧¬$′(x) ∧ γi(x))⇒

γi(x − 1) ∧
∨

(γi,γ j)∈β

γ j(x + 1)

Condition (13) can be written as follows.

|Γ|∨
i=1

∀x (γi(x) ∧¬♦(x) ∧¬♦(x + 1) ∧ ∃y (U2(y) ∧ y < x))⇒ γi(x + 1)

Conjuncting each of the above FO2[<, succ, y = 2x, 1] formula will give us the formula
αM which is satisfiable iff there exists a satisfying run on M. �

9.3 presburger arithmetic with mod quantifiers

We now look at Presburger arithmetic [Pre29] 1. The expressive power of FOmod over
(N,<,+) is the same as that of FO over (N,<,+), that is, the semilinear sets (Ginsburg
and Spanier [GS66]). Infact as Schweikardt et.al [Sch05] points out (see Theorem 7.1.15)
Presburger arithmetic is closed under unary counting quantifiers and hence under modulo
counting quantifiers.

Let us now look at satisfiability of FOmod over (N,<,+). Schweikardt et. al [Sch05]
gives a translation from unary counting quantifiers to FO. This translation is non-elementary.
Now satisfiability of FO over (N,<,+) can be done in double exponential space and
hence it follows that satisfiability of FOmod is non-elementary. In this chapter we give a
better bound.

Our proof follows the method of Ferrante and Rackoff [FR79], who showed that a quan-
tifier of Presburger arithmetic can be replaced by a bounded quantifier (rather than elim-
inated straightaway), and the bounding terms are triple exponential in the size of the
formula. This gives a nondeterministic 2Expspace machine enough leeway to check for
satisfiability. We use the technique to give a 2Expspace upper bound for FOmod over
(N,<,+). The Ferrante and Rackoff method can also be found in the model theory book
[Hod97].

To arrive at this bound, we recall the Ehrenfeucht-Fraïssé game [Ehr69, Fra71, Pot94] for
modulo counting logic. We call the game corresponding to FOmod(q) as EFmod(q). The

1 See Chapter Prelimaries 2 for the precise definition and Chapter 7 for properties of this logic.

110

9.3. PRESBURGER ARITHMETIC WITH MOD QUANTIFIERS

game is given below. The game starts with two structures A and B (with domains A and
B, respectively) of the same signature and a number n ≥ 1. The game consists of n moves,
where two players I and II (also called “spoiler” and “duplicator”, respectively) choose
elements (ai)i=1,...,n from A and elements (bi)i=1,...,n from B, according to the following
rules. Before any move, player I decides whether to play the point move or the set move.
The two different moves are given below.

Definition 9.3.1. Point Move

1. Player I chooses a structure (A or B). If I chooses A, I picks an element ak from
that structure. Otherwise I picks an element bk from the structure B.

2. Player II then selects an element from the other structure, so if I choosesA, II picks
an element bk from B. Otherwise II picks an element ak fromA.

Definition 9.3.2. Set Move - q-modular move

1. Player I choosesA or B. Assume I choosesA. Player I now picks a set A0 ⊆ A.

2. Player II picks a subset B0 ⊆ B, such that |A0| ≡ |B0|(mod q).

3. Player I chooses a structure. Assume I choosesA and picks an element ak ∈ A.

4. Player II picks an element bk ∈ B, such that ak ∈ A0 iff bk ∈ B0.

Player II wins an n-Move game iff after n moves the mapping (a1, ..., an) → (b1, ..., bn)
is a partial isomorphism from A to B, that is, it preserves equality and < and + relation.
Otherwise player I wins. We denote by (a1, ..., ak) ∼n

q (b1, ..., bk) the fact that player II
can always win an n-Move game with the positions a1, ..., ak, b1, ..., bk initially marked.
The equivalence ∼n

q is called game equivalence.

Proposition 9.3.3. [Pot94] Player II has a winning strategy for a k-Move EFmod(q) game
on structures A and B iff A and B satisfy the same FOmod formulas over (N,<,+) of
quantifier depth ≤ k and whose lcm is q.

We will use the game to now define an equivalence relation between tuples of numbers
“affine equivalence”, ≈n

q which is a finer partition than ∼n
q. We first define sets Vi for all

0 ≤ i ≤ n. 2

Definition 9.3.4.
V0 = {−2,−1, 0, 1, 2}

V′i = {
lcm Vi

v
.v′ | v, v′ ∈ Vi}, Vi+1 = V′i ∪ {a + b | a, b ∈ V′i }

2 See for example Hodges [Hod97] for a corresponding treatment for FO.

111

9.3. PRESBURGER ARITHMETIC WITH MOD QUANTIFIERS

Let N = lcm Vn, δ = qnN2. Note that we define lcm of a set S to be the smallest
positive number which can be divided by all non-zero numbers in S . Now we define
linear functions, Fn

k (~x).

Definition 9.3.5.

Fn
k (~x) = { f (~x) | f = c +

k∑
i=1

cixi; ci ∈ Vn and c ≤ δ}

Our idea is to show that FOmod formulas of depth i cannot “represent” any affine function
other than those whose coefficients come from Vi, for all i. The following definition makes
this idea formal.

Definition 9.3.6. (affine equivalence) For vectors ~a, ~b of length k, ~a ≈n
q
~b iff for all

f ∈ Fn
k (~x) the conditions below are satisfied.

f (~a) ≤ 0 iff f (~b) ≤ 0 (10)

f (~a) ≥ 0 iff f (~b) ≥ 0 (11)

ai ≡ bi(mod δ),∀1 ≤ i ≤ k (12)

That is if (a1, . . . , an) and (b1, . . . , bn) satisfy the (3) conditions given above, then no
FOmod formula of depth n will be able to distinguish them. The k-ary affine functions
expressible using FOmod formulas of quantifier depth n are in Fn

k .

The following Lemma show that affine equivalence, ≈0
q refines game equivalence, ∼0

q.
That is the lemma shows that if the tuples satisfy the conditions for functions f from F0

k ,
then no 0 depth FOmod formula will be able to distinguish them. This is the base case of
our induction.

Lemma 9.3.7. ∀k ∈N and k length vectors ~a,~b, we have that ~a ≈0
q
~b⇒ ~a ∼0

q
~b

Proof. Let ~a ≈0
q
~b. To show that ~a ∼0

q
~b, it is sufficient to show that ~a and ~b satisfy the

same set of formulas of depth 0. The depth 0 formulas are of the form xi + x j = xl and
xi < x j, for all i, j, l ≤ k. From ~a ≈0

q
~b it follows that

∑k
i=1 ciai ≤ 0 iff

∑k
i=1 cibi ≤ 0, for

ci ∈ V0 and hence the same set of depth 0 formulas are satisfied by ~a and ~b. �

The next lemma is the main lemma. It shows that the affine equivalence ≈n
q is finer than

the game equivalence ∼n
q. The lemma also shows that for every tuple (a1, . . . , an) there

exists a tuple (b1, . . . , bn) where all the bis are “small” and such that ~a ≈n
q
~b.

What does it mean for satisfiability for FOmod logic? It shows that if a formula is satisfied
then we can find “small” numbers which will satisfy the formula. We obtain a double
exponential bound on how far one needs to search. Before we begin the lemma recall that
N = lcm Vn, δ = qnN2.

112

9.3. PRESBURGER ARITHMETIC WITH MOD QUANTIFIERS

Lemma 9.3.8. For all q, n ∈ N and k length vectors ~a and ~b; ~a ≈n
q
~b ⇒ ~a ∼n

q
~b. Further

there exists a constant, c such that, if every element of ~b is upper bounded by m and ~a ≈n+1
q

~b then for all ak+1 ∈N there exists bk+1 ≤ qnm22c(n+k)
such that ~a, ak+1 ≈

n
q
~b, bk+1.

Proof. Let ~a and ~b be k length vectors. We prove the claim by induction on n. The base
case is given by Lemma 9.3.7.

So let us assume that ~a ≈n+1
q ~b and ∀k ∈ N and for all vectors ~z1, ~z2 of length k and

∀ j ≤ n, we have that ~z1 ≈
j
q ~z2 ⇒ ~z1 ∼

j
q ~z2. To prove that ~a ∼n+1

q ~b consider the n + 1-
round game. Suppose Player I chooses ak+1, we will find a bk+1 for Player II such that
~a, ak+1 ≈

n
q
~b, bk+1. By induction hypothesis this will imply ~a, ak+1 ∼

n
q
~b, bk+1 and hence

Player II can always win an n + 1-round game.

point move: Let Player I pick the element ak+1 in structure A. First let us assume
that f (~a, ak+1) := t(~a) − cak+1 = 0, where f ∈ Fn

k+1. Then we have that ak+1 =
t(~a)

c .

Player II then picks a bk+1 =
t(~b)

c . The three conditions for ~a, ak+1 ≈
n
q
~b, bk+1 can be

proved.

So let us assume now that f (~a, ak+1) , 0, for an f ∈ Fn
k+1. Consider the set of all

statements of the form

f (~a, ak+1) = t(~a) + cak+1 < 0 and f (~a, ak+1) = t(~a) + cak+1 > 0

where f ∈ Fn
k+1, c > 0. Consider the set of terms H = {

f (~x)
c | f ∈ Fn

k , c ∈ Vn} and let
these terms be ordered as h1(~a) < < hr(~a). Let hl(~a) < ak+1 < hl+1(~a). We show
that Player II can pick any bk+1 which satisfies:

hl(~b) < bk+1 < hl+1(~b) and ak+1 ≡ bk+1(mod δ)

Let us denote by gi(~x) = Nhi(~x). Since for all i ≤ r, gi(~x) ∈ Fn+1
k and ~a ≈n+1

q ~b we
have that for all i ≤, gi(~a) ≡ gi(~b)(mod qn+1lcm Vn+1) and hence ∀i gi(~a) ≡ gi(~b)(
mod Nδ). Hence we have:

gl(~a) < Nak+1 < gl+1(~a)

We shall now show that there is a b′ such that

gl(~b) < b′ < gl+1(~b) and Nak+1 ≡ b′(mod Nδ)

If gl+1(~b) − gl(~b) > Nδ, then clearly we can find such a b′.

So let us assume that gl+1(~b) − gl(~b) ≤ Nδ, In that case the following claim gives us that
gl+1(~a) − gl(~a) = gl+1(~b) − gl(~b) which gives us a b′.

Claim 9.3.9. Let f1(~x) = d +
∑k

i=1 dixi and f2(~x) = c +
∑k

i=1 cixi, where the ci, di ∈ V′n
and c, d ≤ Nδ. Let ~a ≈n+1

q ~b. Then | f2(~a) − f1(~a)| ≤ δ⇒ f2(~a) − f1(~a) = f2(~b) − f1(~b).

113

9.3. PRESBURGER ARITHMETIC WITH MOD QUANTIFIERS

Proof. Let β = f2(~a) − f1(~a) be ≤ δ. Now consider the term g(~x) = f2(~x) − f1(~x) − β.
We have that g(~a) = 0, that is (c − d − β) +

∑k
i=1(ci − di)ai = 0. Clearly (c − d − β) ≤

3lcm Vnδ ≤ qn+1(lcm Vn+1)2 and (ci − di) ∈ Vn+1. Thus g(~x) ∈ Fn+1
k and since ~a ≈n+1

q ~b
we have that g(~a) = 0 iff g(~b) = 0 or fi+1(~b) − fi(~b) = β. �

Player II now picks bk+1 = b′
N . Tracing back along our argument, we get that (10)–(12)

are satisfied.

set move: Let Player I mark a set S in the first word for the q-modular move. Now
Player II has to mark a set D. Partition S into intervals S 0 ∪ S 1 ∪ ... ∪ S r+1, where
S 0 = S ∩ {h(~ak) | h ∈ H} and ∀i 1 ≤ i ≤ r S i = S ∩ {z | hi−1(~ak) < z < hi(~ak)} and
S r+1 = S ∩ {z | z > hr(~ak)}. We will show that for each of the S i’s Player II can mark a
set Di such that |S i| ≡ |Di|(mod q) and in addition we have the congruence conditions
that ∀ak+1 ∈ S i,∃bk+1 ∈ Di : ~ak, ak+1 ≈

n
q
~bk, bk+1 as well as ∀ak+1 < S i,∃bk+1 < Di :

~ak, ak+1 ≈
n
q
~bk, bk+1.

For all i such that hi(~ak) ∈ S 0, Player II marks hi(~bk). Thus there is a D0 with |D0| = |S 0|

and the congruence conditions are satisfied (following from the arguments in Point Move).

Now consider S i for i > 0. We define j-congruence classes

S j
i := {s ≡ j(mod δ) | hi(~ak) < s < hi+1(~ak)}

Similarly we can define D j
i in the second word using ~bk. The arguments in the Point Move

shows that one can answer an ak+1 ∈ S j
i by a bk+1 ∈ D j

i . We have |S j
i | ≡ |D

j
i |(mod q),

since ∀i ≤ r : hi(~ak) ≡ hi(~bk)(mod qn+1(lcm Vn+1)2). Moreover from Claim 9.3.9
it follows that |D j

i | = 0 iff |S j
i | = 0 and hence we have that ∀ak+1 ∈ S j

i ,∃bk+1 ∈ D j
i :

~ak, ak+1 ≈
n
q
~bk, bk+1 and ∀ak+1 < S j

i ,∃bk+1 < D j
i : ~ak, ak+1 ≈

n
q
~bk, bk+1.

We now come to the second part of the lemma. From the argument above it is clear that
we can find a bk+1 within a δ-neighbourhood of Fn

k (
~bk). So

bk+1 ≤ 2δ+ km(Max V′n) ≤ 2δ+ km(Max V′n)
≤ 2qn(Max Vn)2|Vn| + km(Max V′n).

Observe that for all i ≤ n, |V′i | ≤ |Vi|
2 and |Vi+1| ≤ 2|V′i |. Hence we get |Vn| ≤ 22O(n)

. Also

Max Vi+1 ≤ 2Max V′i ≤ 2lcm Vi.Max Vi ≤ 2(Max Vi)|Vi|+1. Hence Max Vn ≤ 222O(n)
.

This gives us that bk+1 ≤ qnm222O(n)
and hence for all i ≤ k, bi ≤ qn222O(n+k)

. �

The above Lemma gave a tripe-exponential bound on the size of the numbers. Thus we
get that

Theorem 9.3.10. Satisfiability of FOmod over (N,<,+) is in 2Expspace.

114

9.4. DISCUSSION

Proof. Let α be an FOmod formula over (N,<,+) Lemma 9.3.8 shows that Player II can

always place his pebble at a position bounded by lcm(α)222O(n)
. Hence the quantifiers in

the FOmod[+] formula need to be instantiated with values up to this bound. A machine us-
ing space 22O(|α|)

can run over all the positions and then evaluate a quantifier-free formula
with addition. �

Note that binding the quantifier range to 222O(n)
in Presburger arithmetic gives an algorithm

ATime[22O(n)
, O(n)], with the alternations depending on the quantifier alternations in the

formula [Ber80]. But since FOmod also contains modulo quantifiers we do not get this
upper bound. The reader will also notice that although EF games have been defined for
FOunC [Ruh99b], our combinatorics is specific to modulo counting and the proof does
not easily extend to this logic.

We now show that the satisfiability problem for the two variable logic with unary counting
quantifiers is undecidable. This result follows from the fact that y = 2x can be simulated
in the two variable logic FO2unC[<, succ]. From our Theorem 9.2.1 we get

Theorem 9.3.11. Satisfiability of FO2unC[<, succ] over words is undecidable.

9.4 discussion

We first looked at the two variable logic FO2[<, y = 2x, succ]. We showed that the
satisfiability of this logic is undecidable. An interesting question left open by our work,
concerns the logic without the successor predicate. The undecidability proof given used
the succ relation. So an interesting question to ask is, Is satisfiability of FO2[<, y = 2x]
undecidable?

Open Problem 9.4.1. Is the logic FO2[<, y = 2x] undecidable?

We then looked at Presburger arithmetic extended with modulo counting quantifiers. De-
cision procedures for linear arithmetic are closely studied and implemented in many ver-
ification engines, see the book by Kroening and Strichman [KS08]. Shankar points out
that “even though not many interesting problems are directly expressible in Presburger
arithmetic, a great many of the naturally arising proof obligations and subproblems do
fall into this decidable class” [Sha02]. The design of specification languages using these
quantifiers for verification purposes is an interesting challenge.

Ruhl [Ruh99b] and Schweikardt’s [Sch05] papers show that over (N,<,+), there is an
algorithm to convert a FOunC formula into an equivalent Presburger formula; these papers
do not address complexity issues. The complexity of FOunC over (N,<,+) (known to
be decidable) remains open.

Open Problem 9.4.2. The complexity of satisfiability of FOunC over (N,<,+) is open.
Can it be elementarily decidable? A non-elementary decidability exists.

115

Part IV

C O N C L U S I O N

10

F U T U R E D I R E C T I O N S A N D O P E N Q U E S T I O N S

In this thesis, we looked at logic on words extended with regular quantifiers. We studied
modulo counting quantifiers and group quantifiers in detail and in different settings.

We first looked at logics which define regular languages like FO[<] and linear temporal
logic (LTL) and extended these logics with the above mentioned regular quantifiers. In the
second part, we looked at regular quantifiers over a linear order and an addition function
which respects the linear order. This took us outside regular languages. For the logics we
considered, our primary focus were on the following questions.

1. Expressiveness

We studied the languages/properties definable in these logics. We also saw
techniques which are used to prove non-definability of languages by certain
logics.

2. Satisfiability

We also studied the satisfiability of the above logics. In most cases we identi-
fied the exact complexity of these problems.

Detailed summary of our results can be found at the end of each chapter. The summaries
also give open problems arising out of the work in the respective chapters. The most
interesting among these open questions are listed below.

1. The complexity of satisfiability of FO2mod(2)[<] is left open.

2. Identifying predicates, P such that our techniques can be applied to show that

LS[<,+, P] ∩NLL = LS[<] ∩NLL?

3. Is FOgroup[<,+] a subset of maj[<,+]?

4. Is the logic FO2[<, y = 2x] undecidable?

5. The complexity of satisfiability of FOunC over (N,<,+) is open. Can it be ele-
mentarily decidable? Can it be decidable in 2Expspace?

117

B I B L I O G R A P H Y

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009.

[ABO84] Miklos Ajtai and Michael Ben-Or. A theorem on probabilistic constant
depth Computations. In ACM, editor, Proceedings of the sixteenth annual
ACM Symposium on Theory of Computing, Washington, DC, April 30–May
2, 1984, pages 471–474, pub-ACM:adr, 1984. ACM Press.

[B6̈0] J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math.
Logik Grundl. Math., 6:66–92, 1960.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. Journal of Computer and System
Sciences, 38(1):150–164, February 1989.

[Ber80] Leonard Berman. The complexity of logical theories. Theoretical Computer
Science, 11(1):71–77, May 1980.

[BHMV94] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Ville-
maire. Logic and p-recognizable sets of integers. Bulletin of the Belgian
Mathematical Society, 1(2):191–238, March 1994.

[BIL+05] David A. Mix Barrington, Neil Immerman, Clemens Lautemann, Nicole
Schweikardt, and Denis Thérien. First-order expressibility of languages
with neutral letters or: The Crane Beach conjecture. J. Comput. Syst. Sci.,
70(2):101–127, 2005.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uni-
formity within NC1. Journal of Computer and System Sciences, 41(3):274–
306, December 1990.

[BKR09a] Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Non-solvable
groups are not in FO+MOD+MÂJ2[REG]. In LATA, pages 129–140, 2009.

[BKR09b] Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Regular lan-
guages definable by majority quantifiers with two variables. In Developments
in Language Theory, pages 91–102, 2009.

[BL00a] Michael Benedikt and Leonid Libkin. Expressive power: The finite case. In
Constraint Databases, pages 55–87, 2000.

118

BIBLIOGRAPHY

[BL00b] Michael Benedikt and Leonid Libkin. Relational queries over interpreted
structures. J. ACM, 47(4):644–680, 2000.

[BL06] Christoph Behle and Klaus-Jörn Lange. FO[<]-uniformity. In IEEE Confer-
ence on Computational Complexity, pages 183–189, 2006.

[BMT99] Augustin Baziramwabo, Pierre McKenzie, and Denis Thérien. Modular tem-
poral logic. In Proc. 14th LICS, page 344. IEEE, 1999.

[BS91] David A. Mix Barrington and Howard Straubing. Superlinear lower bounds
for bounded-width branching programs. In Structure in Complexity Theory
Conference, pages 305–313, 1991.

[CKK+07] Arkadev Chattopadhyay, Andreas Krebs, Michal Koucký, Mario Szegedy,
Pascal Tesson, and Denis Thérien. Languages with bounded multiparty com-
munication complexity. In STACS, pages 500–511, 2007.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC,
pages 151–158, 1971.

[Coo72] David C. Cooper. Theorem proving in arithmetic without multiplication.
Mach. Intell., 7:91–99, 1972.

[Dem06] Stéphane Demri. LTL over integer periodicity constraints. Theor. Comput.
Sci, 360(1-3):96–123, 2006.

[DS02] Stéphane Demri and Philippe Schnoebelen. The complexity of propositional
linear temporal logic in simple cases. Inf. Comput., 174(1):84–103, 2002.

[EFT94] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Under-
graduate Texts in Mathematics. Springer, 1994.

[Ehr69] A. Ehrenfeucht. An appliation of games to the completeness theorem for
formalized theories. Fund. Math., 49:129–141, 1969.

[Eil76] Samuel Eilenberg. Automata, Languages, and Machines. Academic Press,
New York, 1 edition, 1976.

[Eme90] E. Allen Emerson. Modal and temporal logics. Handbook of theoretical
computer science, B:995–1072, 1990.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
New York, 1972.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with
two variables and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

[FKPS85] R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Sci-
ence, 36(2-3):239–250, April 1985.

119

BIBLIOGRAPHY

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. J. Comp. Syst. Sci., 18(2):194–211, 1979.

[FR74] Michael J. Fischer and Michael O. Rabin. Super-exponential complexity of
Presburger arithmetic. In R.M. Karp, editor, Proc. SIAM-AMS Symp. Com-
plexity of computations, pages 27–41. Amer. Math. Soc., 1974.

[FR79] Jeanne Ferrante and Charles Rackoff. The computational complexity of logi-
cal theories, volume 718 of LNM. Springer, 1979.

[Fra71] R. Fraisse. Cours de Logique Mathematique: Relation et Formule Logique.
Gauthier-Villars, Paris, 2 edition, 1971.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27,
1984.

[Gab87] Dov M. Gabbay. The declarative past and imperative future: Executable
temporal logic for interactive systems. In Temporal Logic in Specification,
pages 409–448, London, UK, 1987. Springer-Verlag.

[GOR97] Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting
is decidable. In 12th LICS, Warsaw, pages 306–317. IEEE, 1997.

[GOR99] Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-
variable logics. Archive for Mathematical Logic, 38:213–354, 1999.

[GPSS80] Dov Gabbay, Amir Pnueli, Sharanon Shelah, and J. Stavi. On the tempo-
ral analysis of fairness. In Proceedings of the Seventh ACM Symposium on
Principles of Programming Languages, pages 163–173. ACM, 1980.

[GS66] Seymour Ginsburg and Edwin Spanier. Semigroups, Presburger formulas,
and languages. Pacific J. Math., 16(2):285–296, 1966.

[Her64] I. N. Herstein. Topics in Algebra. Blaisdell, 1964.

[Her75] I. N. Herstein. Topics in Algebra. John Wiley & Sons, New York, 2nd edition,
1975.

[Hod97] Wilfrid A. Hodges. A shorter model theory. Cambridge, 1997.

[How95] J.M. Howie. Fundamentals of Semigroup Theory. London Mathematical
Society Monographs. Clarendon, 1995.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley, Reading, Mass., 1979.

[Imm86] Neil Immerman. Relational queries computable in polynomial time. Infor-
mation and Control, 68(1–3):86–104, 1986.

120

BIBLIOGRAPHY

[Imm87a] Neil Immerman. Expressibility as a complexity measure: Results and di-
rections. In Stephen R. Mahaney, editor, Proceedings of the 2nd Annual
Conference on Structure in Complexity Theory, CSCT’87 (Cornell Univer-
sity, Ithaca, NY, June 16-19, 1987), pages 194–202, Washington, D.C., 1987.
IEEE Computer Society, Computer Society Press of the IEEE.

[Imm87b] Neil Immerman. Languages that capture complexity classes. SIAM Journal
on Computing, 16(4):760–778, August 1987.

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer science.
Springer, 1999.

[JR91] Tao Jiang and B. Ravikumar. A note on the space complexity of some deci-
sion problems for finite automata. Inf. Process. Lett., 40(1):25–31, 1991.

[Juk12] Stasys Jukna. Boolean Function Complexity, volume 27 of Algorithms and
Combinatorics. Springer-Verlag, New York, 2012.

[Kam68] Johan A.W. Kamp. Tense logic and the theory of linear order. PhD thesis,
University of California, Los Angeles, 1968.

[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata studies, pages 3–40,
Princeton, NJ, 1956. Princeton University Press.

[KLR07] Andreas Krebs, Klaus-Jörn Lange, and Stephanie Reifferscheid. Character-
izing TC0 in terms of infinite groups. Theory Comput. Syst., 40(4):303–325,
2007.

[KPT05] Michal Koucký, Pavel Pudlák, and Denis Thérien. Bounded-depth circuits:
separating wires from gates. In STOC, pages 257–265, 2005.

[KR65] Kenneth Krohn and John Lewis Rhodes. Algebraic theory of machines. I:
Prime decomposition theorem for finite semigroups and machines. Transac-
tions of the American Mathematical Society, 116:450–464, 1965.

[Kre08] Andreas Krebs. Typed semigroups, majority logic, and threshold cir-
cuits. PhD thesis, Eberhard Karls University of Tübingen, 2008.
urn:nbn:de:bsz:21-opus-36244; http://d-nb.info/991466683.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Springer, 2008.

[Lan04a] Klaus-Jörn Lange. Some results on majority quantifiers over words. In IEEE
Conference on Computational Complexity, pages 123–129. IEEE Computer
Society, 2004.

[Lan04b] Klaus-Jörn Lange. Some results on majority quantifiers over words. IEEE
Conference on Computational Complexity, pages 123–129, 2004.

121

BIBLIOGRAPHY

[Lee03] Troy Lee. Arithmetical definability over finite structures. Math. Log. Q.,
49(4):385–392, 2003.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, Berlin,
2004.

[Lin66] Per Lindström. First order predicate logic with generalized quantifiers. Theo-
ria, 32:186–195, 1966.

[LMSV01] Clemens Lautemann, Pierre McKenzie, Thomas Schwentick, and Heribert
Vollmer. The descriptive complexity approach to LOGCFL. J. Comput. Syst.
Sci, 62(4):629–652, 2001.

[LPS10] Kamal Lodaya, Paritosh K. Pandya, and Simoni S. Shah. Around dot depth
two. In Developments in Language Theory, pages 303–315, 2010.

[LTT06] Clemens Lautemann, Pascal Tesson, and Denis Thérien. An algebraic point
of view on the crane beach property. In CSL, pages 426–440, 2006.

[Lyn82] James F. Lynch. On sets of relations definable by addition. J. Symb. Log.,
47(3):659–668, 1982.

[MTV10] Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uni-
formity for boolean circuits. SIAM Journal on Computing, 39(7):3186–3206,
2010.

[Myh57] J. Myhill. Finite automata and the representation of events. Technical Report
57-624, WADC, 1957.

[Ner58] A. Nerode. Linear automaton transformations. Proceedings of the American
Mathematical Society, 9(4):pp. 541–544, 1958.

[Nur00] Juha Nurmonen. Counting modulo quantifiers on finite structures. Inf. Com-
put., 160(1-2):62–87, 2000.

[ON80] Hiroakira Ono and Akira Nakamura. On the size of refutation kripke models
for some linear modal and tense logics. Studia Logica: An International
Journal for Symbolic Logic, 39(4):325–333, 1980.

[Opp78] Derek C. Oppen. A 222pn
upper bound on the complexity of Presburger arith-

metic. J. Comput. Syst. Sci., 16(3):323–332, 1978.

[Pet00] Holger Petersen. Decision problems for generalized regular expressions.
pages 22 – 29, 2000.

[Pet02] Holger Petersen. The membership problem for regular expressions with in-
tersection is complete in logcfl. In 19th STACS, pages 513–522, London,UK,
2002. Springer-Verlag.

122

BIBLIOGRAPHY

[Pin86] J. E. Pin. Varieties of formal languages. North Oxford Academic, London,
1986.

[Pnu77a] A. Pnueli. The temporal logic of programs. In focs77, pages 46–57, 1977.

[Pnu77b] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science, pages 46–57, Providence, Rhode Island,
31 October–2 November 1977. IEEE.

[Pnu77c] Amir Pnueli. The temporal logic of programs. Proc. 18th Found. Comp. Sci.,
pages 46–57, 1977.

[Pot94] Andreas Potthoff. Modulo-counting quantifiers over finite trees. Theor. Com-
put. Sci., 126(1):97–112, 1994.

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. Comptes Rendus, I. Congrès de Mathématiciens des pays slaves,
Warsaw, pages 192–201, 1929.

[Pri56] Arthur N. Prior. Time and Modality. Oxford University Press, Oxford, 1956.

[PV06] Guoqiang Pan and Moshe Y. Vardi. Fixed-parameter hierarchies inside
PSPACE. In LICS ’06: Proceedings of the 21st Annual IEEE Symposium
on Logic in Computer Science, pages 27–36, Washington, DC, USA, 2006.
IEEE Computer Society.

[PW97] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. The-
ory of Computing Systems, 30(4):383–422, 1997. formerly Mathematical
Systems Theory.

[Raz89] A. A. Razborov. On the method of approximations. In ACM, editor, Pro-
ceedings of the twenty-first annual ACM Symposium on Theory of Comput-
ing, Seattle, Washington, May 15–17, 1989, pages 167–176, pub-ACM:adr,
1989. ACM Press.

[Rob49] Julia Robinson. Definability and decision problems in arithmetic. J. Symb.
Log., 14(2):98–114, 1949.

[Rob58] Raphael M. Robinson. Restricted set-theoretical definitions in arithmetic.
Proc. Amer. Math. Soc., 9:238–242, 1958.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of
Computer and System Sciences, 55(1):24–35, August 1997.

[RS71] R. McNaughton and S. Papert. Counter-free Automata. MIT Press, Cam-
bridge, USA, 1971.

123

BIBLIOGRAPHY

[RS07] Amitabha Roy and Howard Straubing. Definability of languages by gener-
alized first-order formulas over (N,+). SIAM J. Comput, 37(2):502–521,
2007.

[RT89] John Rhodes and Bret Tilson. The kernel of monoid morphisms. Journal of
Pure and Applied Algebra, 62(3):227–268, 1989.

[Ruh99a] M. Ruhl. Counting and addition cannot express deterministic transitive clo-
sure. In 14th Symposium on Logic in Computer Science (LICS’99), pages
326–335, Washington - Brussels - Tokyo, July 1999. IEEE.

[Ruh99b] Matthias Ruhl. Counting and addition cannot express deterministic transitive
closure. In 14th LICS, pages 326–335. IEEE, July 1999.

[RW91] Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-
threshold circuits. Information Processing Letters, 39(3):143–146, 16 Au-
gust 1991.

[SC85] Aravinda Prasad Sistla and Edmund M. Clarke. The complexity of proposi-
tional linear temporal logics. J. ACM, 32(3):733–749, 1985.

[Sch65] Marcel-Paul Schützenberger. On finite monoids having only trivial sub-
groups. Inf. Contr., 8:190–194, 1965.

[Sch76] Marcel Paul Schützenberger. Sur le produit de concaténation non ambigu.
Semigroup Forum, 13:47–75, 1976.

[Sch98] A. Schrijver. Theory of Linear and Integer Programming. Wiley Series in
Discrete Mathematics & Optimization. John Wiley & Sons, 1998.

[Sch01] Nicole Schweikardt. On the expressive power of first-order logic with built-
in predicates, 2001.

[Sch02] Ph. Schnoebelen. The complexity of temporal logic model checking.
In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Za-
kharyaschev, editors, Advances in Modal Logic, pages 393–436. King’s Col-
lege Publications, 2002.

[Sch05] Nicole Schweikardt. Arithmetic, first-order logic, and counting quantifiers.
ACM Trans. Comput. Log., 6(3):634–671, 2005.

[Ser04] Olivier Serre. Vectorial languages and linear temporal logic. Theoret. Comp.
Sci., 310(1-3):79–116, 2004.

[Sha02] Natarajan Shankar. Little engines of proof. In Proc. 11th Formal Methods
Europe, Copenhagen, volume 2391 of LNCS, pages 1–20. Springer, 2002.

124

BIBLIOGRAPHY

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In Proceedings of the fifth annual ACM symposium
on Theory of computing, STOC ’73, pages 1–9, New York, NY, USA, 1973.
ACM.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In ACM, editor, Proceedings of the nineteenth annual
ACM Symposium on Theory of Computing, New York City, May 25–27, 1987,
pages 77–82, pub-ACM:adr, 1987. ACM Press.

[SN92] J. Stévenne and M. Niézette. An efficient symbolic representation of periodic
time. In Int. Conf. on Information and Knowledge Management, Baltimore,
November 1992.

[SN97] Alexei P. Stolboushkin and Damian Niwinski. y = 2x vs. y = 3x. J. Symb.
Log., 62(2):661–672, 1997.

[ST03] Howard Straubing and Denis Thérien. Regular languages defined by general-
ized first-order formulas with a bounded number of bound variables. Theory
Comput. Syst., 36(1):29–69, 2003.

[Sto74] Larry Stockmeyer. Complexity of Decision problems in Automata and Logic.
PhD thesis, MIT, 1974.

[Str94] Howard Straubing. Finite automata, formal logic, and circuit complexity.
Birkhauser Verlag, Basel, Switzerland, 1994.

[Str05] Howard Straubing. Inexpressibility results for regular languages in nonregu-
lar settings. In Developments in Language Theory, pages 69–77, 2005.

[STT95] Howard Straubing, Denis Thérien, and Wolfgang Thomas. Regular lan-
guages defined with generalized quanifiers. Inf. Comput, 118(2):289–301,
May 1995.

[SY00] Kai Salomaa and Sheng Yu. Alternating finite automata and star-free lan-
guages. Theor. Comput. Sci., 234(1-2):167–176, 2000.

[Tho97] Wolfgang Thomas. Languages, automata and logic. In Handbook of formal
language theory, volume III, pages 389–455. Springer, 1997.

[TT02] Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA.
In Semigroups, Algorithms, Automata and Languages 2001, Proceedings,
pages 475–500. World Scientific, 2002.

[TW98] Denis Thérien and Thomas Wilke. Over words, two variables are as pow-
erful as one quantifier alternation. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing (STOC-98), pages 234–240, New York,
May 23–26 1998. ACM Press.

125

BIBLIOGRAPHY

[Var82] M. Y. Vardi. The complexity of relational query languages. In Proceedings of
the 14th ACM Symposium on Theory of Computing (STOC), pages 137–146.
ACM Press, 1982.

[Vol99] Heribert Vollmer. Introduction to circuit complexity. Springer-Verlag,
Berlin-Heidelberg-New York-Barcelona-Hong Kong-London-Milan-Paris-
Singapur-Tokyo, 1999.

[vzGG03] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 2003.

[WI09] Philipp Weis and Neil Immerman. Structure theorem and strict alternation
hierarchy for FO2 on words. Logical Methods in Computer Science, 5(3),
2009.

[WTC61] H. Wang, American Telephone, and Telegraph Company. Proving Theorems
by Pattern Recognition -II. American Telephone and Telegraph Company,
1961.

126

I N D E X

Symbols
(f , A) . 97
(k, k′)-type . 58
1M see identity element
Bw,~a . 88
Bw,~a

t . 89
F . 88
Ft . 88
L(φ), (language of φ) 18, 23
N0(b) . 91
N1(b) . 94
Nk(b) . 94
RφK . 87, 98
Rφ . 87, 98
S n see symmetric group
U1 . 10
[n] . 8
∆ . 88
ΓΦ . 14
Γ j . 15
Z, (integers) . 8
mod, (finite cyclic groups) 11
modp[Arb] . 72
NLL, (neutral letter languages) 72
N, (natural numbers) 8
Σ, (alphabet) . 8
Σ∗, (finite words) . 8
Σ+ . 8
Σ∞, (words) . 8
Σω, (right infinite words) 8
Σ1[Arb] . 72
≈n

q . 112
� . see block product
|w| . see length of word
|, (a|b) . 8
≡, (a ≡n b) . 8
F, (future) . 12
∼n

q see game equivalence
GF

g 〈φ1, . . . , φk〉 . 14

GP
g 〈φ1, . . . , φk〉 . 14

N̂1(b) . 94
N̂k(b) . 94
ν̂m

k, f . 103
λ . see neutral letter
`F

r,q . 13
`P

r,q . 13
B(Σ0,p

1)[<] . 72
G, (finite groups) . 11
LS . 22, 72
LS[<,+] . 73
LS[<] . 73
L[<,+] . 87
M . 10
R . 98
Tt . 97
|= . see satisfies
Qm

M xφ〈α1, . . . ,αK〉 . 22
Q0

U1
. 22

X, (next) . 12
6|= . 20
νm

k, f . 103
|w|a . 8
P, (past). 12
S, (since) . 12
τ-terms . 19
true . 12
U, (until) . 12
Y, (yesterday) . 12
bpc, (block product closure) 11
ith letter . 8
u(i), (group element at i) 21
w(i) . see ith letter
ΣP

3 . 43
AC0 . 9
ACC0 . 9
ACC0(p) . 9
CC0 . 9
CC0(p) . 9

127

INDEX

DA . 27
ITL seeInterval temporal logic26
lenF . 13
lenF(q) . 13
len . 13
lenP . 13
lenP(q) . 13
modF . 13
modF(.)13
mod . 13
modP . 13
modP(.)13
NC1 . 9
TC0 . 9
UITL . 28

A
active domain . 83
active domain formula 83
addition . 19
alternation depth . 18
atomic formulas . 19

B
Barrington’s theorem 77
block product . 10
BlockS AT . 48
boundary points . 89

C
calendar . 5
CBCsee crane beach conjecture
circuits . 9, 69
collapse . 82
collapse-results . 73
congruence conditions 114
congruence relations 19

unary congruence relations. 19
COUNTS AT (PROP) 53
crane beach conjecture. 71

D
depth . 18, 58
descriptive complexity 70
deterministic linear bounded automata . 107
division by monoid . 10

DLBA . . . see deterministic linear bounded
automata

dlogtime uniform circuits 9
dot depth k language. 23
duplicator . 111
tl[dur] . 53
dur . 14

E
Ehrenfeucht-Fraïssé game 110
emptiness problem 107
empty word . 8
equivalent formulas 18

F
Ferrante-Rackoff . 75
finite model theory . 4
first order logic . 19
Fischer-Ladner closure 44
FOgrp . 22
FOk[υ] . 22
FO[<] . 20
FOmod . 22
formal system . 2
FO[τ] . 19
FO2[<,+] . 107
FO2[<, succ, y = 2x, 1] 107
free variables . 20
future depth . 18

G
game equivalence . 111
generating set . 11
generator of group . 11
granularity . 5
group . 11

cyclic . 11
non-solvable . 11
permutation . 15
solvable . 11
symmetric . 11, 16

group quantifiers . 21

H
highly uniform circuit class 73

128

INDEX

I
identity element . 10
IL(b) . 91
impure formula. 18
initially equivalent . 27
interpretation . 20
Interval temporal logic 26
intervals . 89

infinite interval . 89
inverse element. 11
IR(b) . 91

K
Kripke structure . 18
Krohn-Rhodes decomposition theorem . 11

L
language . 8
length counting operators 13
length of word . 8
letter . 8
Lindström quantifiers 21
linear bounded automata 10

deterministic . 10
linear order . 19
linear temporal logic. 12
logic . 2
LTLsee linear temporal logic
LTLgrp . 17
LTLgrpbin . 17
LTLgrpun . 17

M
maj[<] . 22
majority quantifier 21, 73
model. 18
model checking problem 18
modulo counting . 12
monadic second order logic 25
monoid . 10

DA . 11
aperiodic . 11
solvable . 11

monoid quantifier . 21

N
natural proof . 71
neutral letter . 71
neutral letter language 71
nice model . 49
nnp(w) see non-neutral letter positions
non-neutral letter positions 80, 83
nonuniform circuits. 70

O
operator depth . 18
order type . 85

P
pad states . 49
past depth . 18
point move . 111, 113
Post(b) . 91
Pre(b) . 91
Presburger arithmetic 5, 73
presburger arithmetic 23
properties on words . 2
propositional symbols 2
propositions . 2
pure future formula . 18
pure past formula . 18
pure present formula. 18

Q
q-modular move see set move
quantified boolean formulas 51
quantifier depth . 23
quantifier elimination 74, 87
quantifier free . 20

R
R . 88
Ramsey . 84
Ramsey property . 85
recognition by monoid 10
regular expression . 8
regular language . 8

S
satisfiability problem 18, 23
satisfiable . 23

129

INDEX

formula satisfies word 18
semigroup . 10
semilinear sets . 110
sentence . 20
separated . 18, 32
separation property 18, 32
set move . 111, 114
small model property 59
Smolensky’s result 9, 69
spoiler . 111
star free expression . 8
star free language . 8
successor relation . 19
succinct representation of groups 15
syntactic monoid . 10

T
T . 88
tiling . 61
tiling problem . 61

rectangle . 61
square . 61

tiling system . 61
tl . 17
transition system . 18
tree lemma . 100

U
unambiguous language 9
unambiguous languages 27
unary counting quantifiers 20

V
value of a node . 98

W
W . 91
weakly equivalent . 80
witness index . 49
witness state . 49
word . 8
word problem . 10

X
X-weakly equivalent 82

130

	Abstract
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Results
	Formal Languages
	Presburger arithmetic
	Verification
	Circuit Complexity

	Organization of the thesis

	Preliminaries
	Basic Definitions
	Complexity classes
	Semigroups
	Linear temporal logic
	Modulo counting operators
	Group operators
	Extended Temporal Logics
	Other definitions

	First order logic
	Counting quantifiers
	Monoid/Group quantifiers
	Extended first order logic
	Few examples

	Regular Languages
	Survey on regular languages
	Expressiveness
	Group quantifier Extensions
	A sublogic

	Satisfiability and model checking

	LTLgrp Expressiveness (equivalence with FOgrp[<])
	Introduction
	Properties of LTLgrp
	Separation property of LTLgrp
	Expressive Completeness of LTLgrp

	UTL and two variable fragment of FO[<]
	Discussion

	LTLgrp Satisfiability
	Introduction
	Modulo counting
	A Pspace upper bound
	Corresponding lower bound

	Length modulo counting
	Length modulo counting - Upper bound
	Length modulo counting - Lower bound

	Satisfiability of tl[dur] logic
	Discussion

	FO[<] Satisfiability
	Introduction
	Upper bounds via linear temporal logic
	Lower bounds via tiling problems
	Tiling problems
	Modulo counting is Expspace-hard
	Modulo predicates is Nexptime-hard

	Discussion

	Logics with addition
	Survey on addition relation
	Expressiveness
	Descriptive Complexity of Circuit classes
	The Crane Beach conjecture
	Presburger arithmetic extended with modulo counting

	Satisfiability

	FOgrp[<,+] Expressiveness (lower bounds results)
	Introduction
	Results
	Non definability Results
	Decidability of Regular languages in LS[<,+]

	Proof Strategy
	Proof of the Main Theorem
	Definitions
	The Proof

	Proof of Lemma 8.4.6
	Intervals and Linear Functions
	Treating each Bt differently
	Sorting Tree
	Constructing the active domain formula

	Discussion

	FOgrp[<,+] Satisfiability
	Introduction
	Two variable logic with addition
	Presburger arithmetic with mod quantifiers
	Discussion

	Conclusion
	Future directions and Open questions
	Bibliography
	Index

