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Abstract. We contribute to the refined understanding of the language-
logic-algebra interplay in the context of first-order properties of countable
words. We establish decidable algebraic characterizations of one vari-
able fragment of FO as well as boolean closure of existential fragment
of FO via a strengthening of Simon’s theorem about piecewise testable
languages. We propose a new extension of FO which admits infinitary
quantifiers to reason about the inherent infinitary properties of count-
able words. We provide a very natural and hierarchical block-product
based characterization of the new extension. We also explicate its role
in view of other natural and classical logical systems such as WMSO
and FO[cut] - an extension of FO where quantification over Dedekind-
cuts is allowed. We also rule out the possibility of a finite-basis for a
block-product based characterization of these logical systems. Finally,
we report simple but novel algebraic characterizations of one variable
fragments of the hierarchies of the new proposed extension of FO.
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1 Introduction

Over finite words, we have a foundational language-logic-algebra connection (see
[18,10]) which equates regular-expressions, MSO-logic, and (recognition by) fi-
nite monoids/automata. In fact, one can effectively associate, to a regular lan-
guage, its finite syntactic monoid. This canonical algebraic structure carries a
rich amount of information about the corresponding language. Its role is high-
lighted by the classical Schutzenberger-McNaughton-Papert theorem (see, for
instance, [11]) which shows that aperiodicity property of the syntactic monoid
coincides with describability using star-free expressions as well as definability in
First-Order (FO) logic. So, we arrive at a refined understanding of the language-
logic-algebra connection to an important subclass of regular languages: it equates
star-free regular expressions, FO-logic, and aperiodic finite monoids.

A variety of algebraic tools have been developed and crucially used to obtain
deeper insights. Some of these tools [11,15,17] are: ordered monoids, the so-
called Green’s relations, wreath/block products and related principles etc. Let
us mention Simon’s celebrated theorem [14] - which equates piecewise-testable
languages, Boolean closure of the existential fragment of FO-logic and J-trivial
finite monoids'. It is important to note that this is an effective characterization,

L 1t refers to J - one of the fundamental Green’s relations
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that is, they provide a decidable characterization of the logical fragment. There
have been several results of this kind (see the survey [6]). Another particularly in-
teresting set of results is in the spirit of the fundamental Krohn-Rhodes theorem.
These results establish a block-product based decompositional characterization
of a logical fragment and have many important applications [15]. The prominent
examples are a characterization of FO-logic (resp. FO?, the two-variable frag-
ment) in terms of strongly (resp. weakly) iterated block-products of copies of
the unique 2-element aperiodic monoid.

One of the motivations for this work is to establish similar results in the the-
ory of regular languages of countable words. We use the overarching algebraic
framework developed in the seminal work [4] to reason about languages of count-
able words. This framework extends the language-logic-algebra interplay to the
setting of countable words. It develops fundamental algebraic structures such as
finite ®-monoids and ®-algebras and equates MSO-definability with recogniz-
ability by these algebraic structures. A detailed study of a variety of sub-logics
of MSO over countable words is carried out in [5]. This study also extends clas-
sical Green’s relations to ®-algebras and makes heavy use of it. Of particular
interest to us are the results about algebraic equational characterizations of FO,
FOl[cut] — an extension of FO that allows quantification over Dedekind cuts and
WMSO - an eztension of FO that allows quantification over finite sets. A decid-
able algebraic characterization of FO? over countable words is also presented in
[9]. Another recent development [1] is the seamless integration of block products
into the countable setting. The work introduces the block product operation
of the relevant algebraic structures and establishes an appealing block prod-
uct principle. Further, it naturally extends the above-mentioned block product
characterizations of FO and FO? to countable words.

In this work, we begin our explorations into the small fragments of FO over
countable words, guided by the choice of results in [6]. We arrive at the language-
logic-algebra connection for FO! — the one variable fragment of FO. Coupled with
carlier results about FO? and FO=FO? (see [7]), this completes our algebraic
understanding of FO fragments defined by the number of permissible variables.
We next extend Simon’s theorem on piecewise testable languages to countable
words and provide a natural algebraic characterization of the Boolean closure
of the existential-fragment of FO. Fortunately or unfortunately, depending on
the point of view, this landscape of small fragments of FO over countable words
parallels very closely the same landscape over finite words. This can be attributed
to the limited expressive power of FO over countable words. For instance, Bes
and Carton [3] showed that the seemingly natural ‘finiteness’ property (that the
set of all positions is a finite set) of countable words can not be expressed in FO!

One of the main contributions of this work is the introduction of new in-
finitary quantifiers to FO. The works [2,8] also extend FO over arbitrary struc-
tures by cardinality/finitary-counting quantifiers and studies decidable theories
thereof. An extension of FO over finite and w-words by modulus-counting quan-
tifiers is algebraically characterized in [16]. The main purpose of our new quan-
tifiers is to naturally allow expression of infinitary features which are inherent in
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the countable setting and study the resulting definable formal languages in the
algebraic framework of [4]. An example formula using such an infinitary quan-
tifier is: 31z : a(x) A =3°°1x : b(z). In its natural semantics, this formula with
one variable asserts that there are infinitely many a-labelled positions and only
finitely many b-labelled positions. We propose an extension of FO called FO[o]
that supports first-order infinitary quantifiers of the form 3°°¢z to talk about
existence of higher-level infinitely (more accurately, Infinitary rank k) many
witnesses . We organize FO[oo] in a natural hierarchy based on the maximum
allowed infinitary-level of the quantifiers.

We now summarize the key technical results of this paper. We establish a
hierarchical block product based characterization of FO[oco]. Towards this, we
identify an appropriate simple family of ®-algebras and show that this family
(in fact, its initial fragments) serve as a basis in our hierarchical block product
based characterization. We establish that FO[oco] properties can be expressed
simultaneously in FO[cut] as well as WMSO. We also show that the language-
logic-algebra connection for FO! admits novel generalizations to the one variable
fragments of the new extension of FO. We finally present ‘no finite block product
basis’ theorems for our FO extensions, FO[cut], and the class FO[cut] N WMSO.
This is in contrast with [1] where the unique 2-element ®-algebra is a basis for
a block-product based characterization of FO.

The rest of the paper is organized as follows. Section 2 recalls basic notions
about countable words and summarizes the necessary algebraic background from
the framework [4]. Section 3 deals with the small fragments of FO: FO! and
the Boolean closure of the existential fragment of FO. Section 4 contains the
extensions FO[oo] and results relevant to it. Section 5 is concerned with ‘no
finite block product basis’ theorems.

2 Preliminaries
In this section we briefly recall the algebraic framework developed in [4].

Countable words A countable linear ordering (or simply ordering) o = (X, <)
is a non-empty countable set X equipped with a total order: X is the domain
of a. An ordering 8 = (Y, <) is called a subordering of a if Y C X and the
order on Y is induced from that of X. We denote by w,w™*,d,n the orderings
(N, <), (=N, <), (Z, <), (Q, <) respectively. A Dedekind cut (or simply a cut) is
a left-closed subset Y C X of a. Given disjoint linear orderings (5;)icq indexed
with a linear ordering a, their generalized sum . f; is the linear ordering
over the union of the domains of the f;’s, with the order defined by = < y if
either x € §; and y € B; with i < j, or z,y € §; for some 7, and < y in §;. The
book [12] contains a detailed study of linear orderings.

An alphabet X is a finite set of symbols called letters. Given a linear ordering
a, a countable word (henceforth called word) over X' of domain « is a mapping
w: a — X. The domain of a word is denoted dom(w). For a subset I C dom(w),
w|; denotes the subword got by restricting w to the domain 1. If T is an interval
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(Ve,y € I, x < z < y — z € I) then w|; is called a factor of w. The set of
all words is denoted ¥® and the set of all non-empty (resp. finite) words X®
(resp. X*). A language (of countable words) is a subset of X®. The generalized
concatenation of the words (w;)ieq indexed by a linear ordering « is Hiea w;
and denotes the word w of domain 7, B; where f3; are disjoint and such that
w|g, is isomorphic to w; for all i € a.

The empty word €, is the only word of empty domain. The omega power of
a word w is defined as w® ::= [[;.,, w. The omega™ power of a word w, denoted
by w*, is the concatenation of omega* many w’s. The perfect shuffle for a non-
empty finite set of letters A C X' (denoted by A7) is a word of domain (Q, <) in
which only letters from A occur and, all non-empty and non-singleton intervals
contain at least one occurrence of each letter in A. This word is unique up to
isomorphism [13]. We can extend the notion of perfect shuffle to a finite set of
words W = {wi, ..., w}. We define W" to be [[,cqwy) where f: (Q, <) —
{1,2,...,k} is the unique perfect shuffle over the set of letters {1,2,...,k}.

The algebra A ®-monoid M = (M, ) is a set M equipped with an operation
7, called the product, from M® to M, that satisfies w(a) = a for all @ € M, and
the generalized associativity property: for every words u; over M with i ranging
over a countable linear ordering o, 7 ([T;c wi) = 7 (IT;co 7(ui)). We reserve the
notation id for the identity element id = w(e); it is called the neutral element in
[4]. An example of a ®-monoid is the free ®-monoid (¥®, e, []) over the alphabet
Y with the product being the generalized concatenation. Now we discuss some
natural algebraic notions. A morphism from a @-monoid (M, 7) to a @-monoid

(M',7')is amap h : M — M’ such that, for every w € M®, h(n(w)) = 7' (h(w))
where h is the pointwise extension of h to words. We skip the notions sub-
®-monoid and direct products since they are as expected. We say M = (M, )
divides M! = (M’, ') if there exists a sub ®-monoid M"” = (M”,#"") of M’ and
a surjective morphism from M" to M.

A ®-monoid M = (M, ) is said to be finite if M is so. Note that, even for a fi-
nite ®-monoid, the product operation 7 has an infinitary description. It turns out
that 7 can be captured using finitely presentable derived operations. Correspond-
ing to a ®-monoid (M, ) there is an induced ®-algebra M = (M, id,-, 7,7, K)
where the operations are defined as following: for all a,b € M, a-b = 7(ab),
a™ =7(a*), a” =m(a¥") and for all ) # E C M, E* = n(E"). For a singleton
set {m}, we write m" = {m}*. These derived operators satisfy certain natural
axioms; see [4] for details. It has been established in [4] that an arbitrary finite
®-algebra M = (M, id, -, 7, 7", k) satisfying these natural axioms is induced by
a unique ®-monoid M = (M, 7). It is rather straightforward to define the notions
of morphisms, subalgebras, direct-products as well as division for ®-algebras.

It follows from the definition of a ®-algebra M = (M, id,., 7, 7", k) that
(M,1id,-) is a monoid, that is the operation - is associative with identity id.
Note that, for all m € M, m+id = id*m = m and for all ) # F C M, E* =
(EU {id})*. Further, id”™ = id™ = id® = id. As a result, in our definitions of
®-algebras later in the paper, we restrict the descriptions of derived operators to
M\ {id}. An idempotent is an element e where e-e = e. For an element m, the
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idempotent power m' is the idempotent got by multiplying m a finite number of
times. An idempotent power exists for all elements in a finite ®-monoid.

An evaluation tree over a word u € M®\{e} is a tree T = (T, h) such that
every branch/path of 7 is of finite length and where every vertex in 7" is a factor
of u, the root is uw and h : T'— M is a map such that:

— A leaf is a singleton letter a € M such that h(a) = a.

— Internal nodes have either two or w or w* or Q many children.

— If w has children vy and vy, then w = v1v9 and h(w) = h(vy)-h(vs).

— If w has w many children (vq,vs,...), then there is an idempotent e such
that e = h(v;) for all i > 1, and w =[], v and h(w) = €.

— If w has w* many children (..., v_s,v_1), then there is an idempotent f such
that f = h(v;) for all i < —1, and w = [],,. v; and h(w) = f7 .

— If w has Q many children (v;);cq, then w = HieQ v; where for the perfect
shuffle f over an E' = {ay,...,ar} € M, h(v;) = as(;), and h(w) = E*.

The value of T is defined to be h(u). It was shown in [4, Proposition 8 and 9]
that every word u has an evaluation tree and the values of two evaluation trees
of u are equal and they are equal to 7(u). Therefore, a ®-algebra defines the gen-
eralized associativity product = : M® — M. The correspondence between finite
®-monoids and ®-algebras permits interchangeability; we exploit it implicitly.

A morphism from the free ®-monoid X® to M is described (determined)
by a map b/ : ¥ — M; we simply write A’ : ¥ — M. With A’ also denoting
its pointwise extension b’ : X® — M®, given a word u € X%, we can use the
evalution tree over the word h'(u) € M® to obtain 7(h'(u)) € M. By further
abuse of notation, A’ : ¥® — M also denotes the morphism which sends u to
m(h/(u)). We say that L is recognized by M if there exists a map/morphism
h': X% — M® such that L = h/~1(h/(L)). The fundamental result of [4] states
that regular languages (MSO definable languages) are exactly those recognized
by finite ®-monoids (equivalently ®-algebras). It is important to note that, every
regular language L is associated a finite (canonical /minimal) syntactic ®-monoid
which divides every ®-monoid that recognizes L. Further, it can be represented
as a ®-algebra from a finite description of L.

Ezample 1. The ®-monoid U; = ({id,0},7) and its induced ®-algebra are
shown on the left and right respectively.

id if S = {id}

0  otherwise 0 otherwise

) = {id if ue {1d}®

Let X' = {a,b} and L be the set of words which contain an occurence of letter a.
It is easy to see that the map h : ¥ — Uj sending h(a) = 0, h(b) = id recognizes
L as L =h=1(0). In fact, Uy is the syntactic ®-monoid of L.

Ezample 2. Consider the ®-algebra Gap= ({id,[1,(1,[),(),9},1d,-, 7, 7%, K).
We let X = {a} and define the map h : X — Gap as h(a) = []. The resulting
morphism maps a word u to h(u) = ¢ iff the word v admits a gap; that is
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a cut with no maximum and its complement has no minimum. Other words
are mapped to their right ‘ends-type’: for instance, h(u) = [) iff dom(u) has
a minimum and no maximum. For a word v = a¥a®", the pointwise extension

v = h(v) = [1¥] 1“". An example evaluation tree 7 for v/ consists of root with
two children. The left (resp. right) child has w (resp. w*) many children [ ] and
has value [ |7 (resp. [ 17 ). As a result, the value of T is []7+[]7 =[)(]=g.
(10D 0g T T

(I oo g ()] (]

DD g9 99 DO Snz{id if § = {id}

(Her oo g ()] (1] g  otherwise

O g g9 g g|4g

919 9 9 99 g9

We can characterize ®-monoids using equational identities. For example, M
is a commutative ®-monoid if and only if M satisfies the equation z-y = y-x.
This means that the equation holds for any assignment of elements in the M to
the variables z and y. We say M is aperiodic if it satisfies the profinite identity
x = x-z'. Like in the case of monoids, the set of ®-monoids satisfying a set of
equations are closed under subsemigroup, division and direct product [5].

The block product of ®-monoids M and N, is denoted by MUN and is the
semidirect product of M and K = NM*M with respect to the canonical left and
right ‘action’ of M on K. The details are given in [1]. The block product principle
characterizes languages defined by block product of ®-monoids. Towards this,
fix a map h : ¥ — MON such that h(a) = (mg, fo) where m, € M and
fa: M xM — N.The map hy : ¥ — M setting by (a) = m, defines a morphism
hy : ¥ — M. We define the transducer o : X% — (M x X x M)® as follows:
let u € X® with domain a. The word v’ = ¢(u) has domain « and for a position
z € a, u'(z) = (hi(ucy),u(x), h1(usy)). Here uc, (resp. usy)) is the subword
of u on positions strictly less (resp. greater) than z.

Proposition 1 (Block Product Principle [1]). Let L C X® be recognized
by h : X — MUON Then L is a boolean combination of languages of the form
Ly and 0= Y(Ly) where Ly and Ly are recognized by M and N respectively and
0: X% = (M x X x M)® is a state-based transducer.

3 Small fragments of FO

In this section, we focus on two particularly small fragments of first-order logic
interpreted over countable words. First-order logic uses variables z, vy, z, . . . which
are interpreted as positions in the domain of a word. The syntax of first-order
logic (FO)is:x <y |a(z) |1 A2 | d1V P | 7 | Tz ¢, for all a € X.

We skip the natural semantics. A language L of countable words is said to
be FO-definable if there exists an FO-sentence ¢ such L = {u € X¥ | u |= ¢}.

Recall that the classical Schutzenberger-McNaughton-Papert theorem char-
acterizes FO-definabilty of a regular language of finite words in terms of aperi-
odicity of its finite syntactic monoid. The survey [6] presents similar decidable
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characterizations of several interesting small fragments of FO-logic such as FO!,
FO?, B(3*) — boolean closure of the existential first-order logic. It is known [7]
that, over finite as well as countable words, FO = FO®. As mentioned in the
introduction, over countable words, we already have decidable algebraic charac-
terizations of FO? from [5] and FO? from [9]. Here we identify decidable algebraic
characterizations, over countable words, for FO' and B(3*).

3.1 FO with single variable

The fragment FO! has access to only one variable. We recall that over finite
words a regular language is FO'-definable iff its syntactic monoid is commutative
and idempotent. We henceforth focus our attention to FO! on countable words.

Clearly, FO! can recognize all words with a particular letter. With a single
variable the logic cannot talk about order of letters or count the number of
occurrence of a letter. This gives an intuition that the syntactic ®-monoid of a
language definable in FO! is commutative and idempotent.

We say that a ®-algebra M = (M, id, -, 7, 7%, k) is shuffle-trivial if it satisfies
the equational identity: {x1,...,2,}" = x1-22- ... -Tp.

Then M is commutative: z-y = {z,y}* = {y,x}* = y-x. Moreover, every
element of M is a shuffle-idempotent: for all m € M, m"* = m. It is a consequence
of the axioms of a ®-algebra that a shuffle-idempotent is an idempotent.

Theorem 1. Let L C X® be a reqular language. The following are equivalent.

L is recognized by some finite shuffle-trivial ®-algebra.

L is a boolean combination of languages of the form B® where B C X.
L is definable in FO'.

L is recognized by direct product of Uy s.

The syntactic ®-algebra of L is shuffle-trivial.

Grds Lo o =

3.2 Boolean closure of existential FO

Let us first recall the characterization of B(3*) - the boolean closure of existen-
tial FO over finite words. This is precisely the content of the theorem due to
Simon [14]. The usual presentation of Simon’s theorem refers to piecewise testable
languages which are easily seen to be equivalent to B(3*)-definable languages.
Simon’s theorem states that a regular language of finite words is B(3*)-definable
iff its syntactic monoid is J-trivial. We refer to [11] for a detailed study of Green’s
relations and its use in the proof of Simon’s theorem.

The original proof of Simon’s theorem uses the congruence ~,,, parametrized
by n € N, on finite words X*: for u,v € X*, u ~,, v if v and v have the same set
of subwords of length less than or equal to n. Note that ~,, has finite index.

We fix n € N and work with ~,, defined on countable words X®: for u,v €
X® u ~, vif u and v have the same set of subwords of length less than or equal
to m. It is immediate that ~,, is an equivalence relation on X® of finite index.
We let S, = X®/ ~,, denote the finite set of ~,-equivalence classes. For a word
w, [w], denotes the ~,-equivalence class which contains w.
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Lemma 1. There is a natural well-defined product operation 7 : S® — S, as
follows: W(Hi@[wi]n) = [[Lica wz]n This operation 7 satisfies the generalized

associativity property. As a result, Sy, = (S, 1d = [e]n, ) is a ®-monoid.

Note that the lemma implies that h, : X® — S, mapping w to [w], is a
morphism of ®-monoids.

We say that a ®-algebra is shuffle-power-trivial if it satisfies the (profinite)
identity: {z1,...,2,}"* = (21-72-...-7,)". Note that, every idempotent of such
a ®-algebra is a shuffle-idempotent: z' = x implies 2" = .

Theorem 2. Let L C X® be a reqular language. The following are equivalent.

1. L is recognized by a finite shuffle-power-trivial ®-algebra.

2. L is recognized by the quotient morphism h, : X® — S, for some n.
3. L is definable in B(3*).

4. The syntactic ®-algebra of L is shuffle-power-trivial.

4 First Order Logic with infinitary quantifiers

Our results in the previous section resemble very closely the corresponding results
over finite words. This can be attributed to the limited capability of the operators
7, 7" and K in the ®-monoids we witnessed. As mentioned in the Introduction,
FO cannot define the language of infinite number of a’s. An existential quantifier
is a threshold counting quantifier - it says there exists at least one position
satisfying a property. Using multiple such first-order quantifiers, FO can count
up to any finite constant but not more. Over countable words, it is natural to ask
for stronger threshold quantifiers. We introduce natural infinite extensions of the
existential quantifier. These quantifiers can distinguish ordinals in the infinite.
We define Z; to be the set of all non-empty finite orderings. For any number
n € N, we define the set Z,, to be the set of all orderings of the form »,_, a;
where o; € Z,,_1 U {e} and is closed under finite sum. We define the Infinitary
rank (or simply rank) of a linear ordering a (denoted by Z-rank(a)) as the
least n (if it exists) where a € Z,. If there is no such n we say that the rank
is infinite. For example, Z-rank(w) = Z-rank(w + w) = Z-rank(w* +w) = 1,
T-rank(w?) = T-rank(w? + w*) = 2, and the rank of rational numbers is infinite.
We introduce the logic FO[oo] extending FO with infinitary quantifiers :

Foog p|F®x p|... | I¥z @ |...forallneN.
Note that all the variables are first order. The semantics
of the infinitary quantifier 3*°~z for an n > 0 is: for a word
w and an assignment s, we say w, s = 3%z @ if there exists IE'
a subordering X C dom(w) such that Z-rank(X) = n and
w,slx = i E ¢ for all i € X. For example, 302 ¢ is Ao-chain

equivalent to 3x ¢ since both formulas are true if and only
if there is at least one satisfying assignment = = s.



Extended FO 9

The logic FO[(c0;) <n] denote the fragment containing
only the infinitary quantifiers 3°%x for all j < n. Clearly the

following relationship is maintained among the logics: Iz'

FO = FO(00,) 0] € FO[(00;);21] € FO[(00;);<2] € ...

We also denote by FO'[(c0;);<n] the corresponding one vari-

able fragment of FO[(c0;);<n].

Ezample 3. The formula 3*'z a(z) denotes the set of all Fig. 1: A,
countable words with infinitely many positions labelled a.
Since FO cannot express this, it shows FO C FO[(00;);<1].

-chain

For ann > 0, we define the ®-algebra A, -chains as: ({id,0,1,...,n},id, -, 7, 7", K)
where for all 0 < i < j < mn, i-j = j-i = max(i,j) = j and for all 0 < k < n,
kT = k™ = k+4+1and n” = n7 = n. That is, k™ = k7 = min(k + 1,7n)
Moreover, id® = id and S* = n for any S where S\{id} # 0.

Ay = ({34,0,1,...,n}, {i,5} ¥ max(i, ), = min(i+1,n),i 7 min(i+1,n), 5 < n)?

Note that the syntactic ®-algebra for the language defined by 3~z a(x) is A,.

4.1 FOJoco] with single variable

In this section we show that languages recognized by A,, are definable in FO'[(00;) j<n].
It is easy to observe that the direct product of A, recognize exactly those lan-
guages definable in the one variable fragment.

Theorem 3. Languages recognized by direct product of A, are exactly those
definable in FO'[(00;)j<n].

Proof. We first show that languages recognized by A,, are definable in FO* [(00/)j<n]-
Let h: ¥® — A, be a morphism. It suffices to show that for any element

m € A,, h~!(m) is definable in FO'[(c0;);<y]. In the rest of the discussion we
adopt the convention that id < 0. Let tm denote the set {m’ | m’ > m}. Note
that for an m < n, h=*(m) = h=t(tm) \ A~} (t(m + 1)) and h=(n) = h=1(1n).
Therefore, it is sufficient to show that h=!(tm) is definable in FO'[(00;)j<n].
For each m € A,,, we define the language L(m) as

{w | there exists a letter a in w such that h(a) = j # id and either j > m or
there is a set of positions a labelled a such that Z-rank(a) = j' and j +j' > m}
The following FO'[(c0,);<,] sentence defines the language L(m).

\/ dzr a(z) V \/ Jm=—r@ g a(x)

a€X, h(a)>m a€X, 0<h(a)<m

2 As mentioned in the Preliminaries, we restrict the descriptions of derived operators

to A, \ {id}
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We show that L(m) = h~!(tm) by induction on m. The base case holds since
tid = A,, h~1(1id) = X® and L(id) = Y®. To prove the induction hypothesis
assume the claim holds for all j < m. Consider a word w. By a second induction
on the height of an evaluation tree (T, h) for w we show for all words v € T', v €
h=1(tm) if and only if v € L(m). In each of the following cases we assume that
the children of the node (if they exist) satisfy the second induction hypothesis.

1. Case v is a letter: The hypothesis clearly holds

2. Case v is a concatenation of two words v; and vo: There are two cases
to consider - {v1,v2} N h~1(tm) # 0 or not. In the first case, let for an
i € {1,2} we have h(v;) > m and v; € L(m). Clearly h(v) = h(vivs) > m
and v € L(m). For the second case, let us assume h(vy) = i and h(ve) = j
such that ¢ < j < m and both v1,vs ¢ L(m). From the definition of A,,, it
follows that h(v) = h(vive) = j. Let the a-labelled suborderings in v; and
vy be a1 and ay respectively where Z-rank(ay) < Z-rank(as) = j'. It follows
from the definition that Z-rank(a; 4+ ag) = j' and therefore v ¢ L(m).

3. Case v is an omega sequence of words (vy,ve,...,) such that h(v;) = k, for
all 4, and k is an idempotent (in 4A,, all elements are idempotents): Firstly, if
k > m and v; € L(m) then clearly h(v) > m and v € L(m). The non-trivial
case is k = m — 1. From the second induction hypothesis v; ¢ L(m) for all 7.
From the definition of A,,, h(v) = k™ = m. We need to show that v € L(m).
By first induction hypothesis, each v; has a letter a; and an a;-labelled set
of positions «; such that h(a;) + Z-rank(a;) = k. Since |X| is finite, there
is a letter a occurring in omega many factors. Hence the a-labelled set of
positions « in v satisfies h(a)+Z-rank(«) = k+1 or in other words v € L(m).

4. Case v is an omega™® sequence: This case is symmetric to the above case.

5. Case v is a perfect shuffle, h(v) = S*: It is easy to see that the induction
hypothesis holds if S = {id}. So, assume S N {id} # (). Hence h(v) = n.
Since, there are rational number of children v where h(u) # id, there is a
letter a such that a-labelled set of positions in v has infinite rank or v € L(n).

The other direction of the proof follows from the fact that a one variable quanti-
fier free formula is essentially a disjunction of letter predicates and therefore the
boolean combination of formulas can be recognized by direct products of Ayg.

4.2 The general FO[oo] logic

In this section, we consider the full logic FO[(c0;);<,] and observe that they
define exactly those languages recognized by block products of A,,.

Theorem 4. The languages defined by FO[(00;),<n] are exactly those recognized
by finite block products of A,. Moreover, the languages defined by FO[oo] are
exactly those recognized by finite block products of {A, | n € N}.

Proof. We first show that languages recognizable by finite block products of A,
are definable in FO[(00;);<y]. The proof is via induction on the number of A,
in an iterated block product. The base case follows from Theorem 3.
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For the inductive step, consider a morphism h: X® — MOA,,. Let hy: X® —
M be the induced morphism to M, and let o be the associated transducer. By
the block product principle (see Proposition 1), any language recognized by h
is a boolean combination of languages L; € X® recognized by M and o~1(Ly)
where Ly C (M x X x M)® is recognized by A,. By induction hypothesis,
Ly is FO[(c0;)<n] definable. By the base case Ly is FO[(00;);j<,] definable
but over the alphabet M x X' x M. To complete the proof, one needs to show
for any word w € X® and assignment s, and for any FO[(00,);<,] formula ¢
over the alphabet M x X' x M, there exists a FO[(c0;);<,]| formula ¢ over the
alphabet X' such that w, s = ¢ if and only if o(w), s = . For instance, suppose
p = 3%z (my,c,me)(x), and inductively @, (resp. ¢m,) are FO[(00;) <n]
formula characterizing words over X® that are mapped by hy to my (resp. ms).
Then ¢ is 3% (P, |<x AC(T) A Pmy|>a), Where ¢, | <o is the formula ¢,,, with
all its variables relativised to less than the variable x. This way, one proves that
07 1(Ls) is FO[(00;)j<n] definable. This completes the proof of this direction.

The other direction of the proof is a standard generalization of the proof of
equivalence of FO and the block product closure of Ay given in [1, Theorem
2]. The block product principle allows us to “simulate” infinitary quantifiers
using block products of A, and vice-versa. We can then inductively recognize
languages defined by formulas using iterated block products.

We claim that both first order logic with cuts (FO[cut]) and weak monadic
second order logic (WMSO) can define the languages definable in FO[oo].

Theorem 5. FO[oo] C FO[cut] N WMSO 3

5 No Finite Basis Theorems

The main goal of this section is to prove that FO[oo], FO[cut] and FO[cut] N
WMSO over countable words do not admit a block product based characteriza-
tion which uses only a finite set of ®-monoids. This is in stark contrast with the
result in [1] which shows that a language of countable words is FO-definable iff it
is recognized by a strong iteration of block product of copies of A, (alternately
called Uy). This is abbreviated by saying that FO has a block-product based
characterization using a basis which contains the single ®-monoid Aj. Notice
that, it follows from the results in the previous section that FO[oo] admits a
block product based characterization using the natural infinite basis { Ay, }nen.
Fix a finite ®-algebra M = (M, id,-, 7, 7", k). For every n € N, we define the
operation -y, : M — M which maps = to 7. The inductive definition of =, is
as follows (recall idempotent power): 27 = z' and 7 = ((z7»~1)7 (z71)7" ).

Lemma 2. For each m € M, there exists n such that VYn' > n,m’ = mn’.

We now define the gap-nesting-length of M (in notation, gnlen(M)) to be the
smallest n such that for all m € M, m" = m +1. It follows from the previous

3 Here, FO[oo], FO[cut], WMSO denote the languages defined by the respective logic.
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lemma that a finite ®-algebra has a finite gap-nesting-length. It is a simple
computation that, for each k, gnlen(A;) = k. The following main technical
lemma is the key to our no-finite-basis theorems.

Lemma 3. For finite aperiodic* ®-algebras M and N,

1. We have, gnlen(MON) < max (gnlen(M), gnlen(N)).
2. If M divides N then gnlen(M) < gnlen(IN).

Corollary 1. FO[(00;),<n] € FO[(c0;)j<n+1]-

Proof. By Theorem 4, the syntactic ®-algebra M of any FO[(c0;)<n]-definable
language divides a block product of copies of A,. By Lemma 3 and the fact
that gnlen(Ay) = n, gnlen(M) < n. Note that, A, is the syntactic ®-algebra
for the language L defined by the FO[(00;) j<n+1] formula 3°m+1z a(x). As
gnlen(A,41) = n + 1, it follows that L cannot be defined in FO[(00;);<n].

Theorem 6. There is no finite basis for a block product based characterization
for any of these logical systems FO[oo], FO[cut], FO[cut] N WMSO.

Proof. Fix one of the logics £ mentioned in the statement of the theorem. It
follows from Theorem 5 and the algberaic chacterization [5] of FO[cut] that the
syntactic ®-algebras of L-definable languages are aperiodic. Now suppose, for
contradiction, let £ admit a finite basis B of aperiodic ®-algebras for its block
product based chacterization. Since B is finite, there exists n € N such that for
all ®-algebras M in B, gnlen(M) < n. It follows by Lemma 3 that the syntactic
@®-algebra N of every L-definable language has the property gnlen(N) < n.

Now consider the language L defined by the FO[oo] sentence ¢ = 3°°n+1z a(x).
By Theorem 5, L is L-definable. Hence, the gap-nesting-length of the syntactic
®-algebra K of L is less than or equal to n. However, K is simply 4,1 and
gnlen(A,,+1) = n + 1. This leads to a contradiction.
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