
Chapter 1

Parity Games

1.1 Introduction

The parity game is a two player game. The players will be called Odd and
Even. It is played on a finite directed graph whose vertices are partitioned
into two (one part for player Odd, the other for player Even). The edges of
the graph are labelled by a number called priority. Formally,

Definition 1.1 (board of parity game). The board of the parity game is
given by B = (V, V1, V2, E, P, γ) where V is a finite set of vertices, V1 and V2
partition V , E ⊆ V ×V is the set of edges, P is a set of priorities, γ : E → P
is a mapping of edges to priorities.

We also assume that there is no sink state in the graph. That is, all
vertices have outgoing edges.

In the definition, the set of vertices V1 are owned by player Odd and V2
are owned by Even. A parity game is played on a board from a start state.

Definition 1.2 (parity game). A parity game consists of a board as well as a
start state. That is, a parity game, G = (B, s) where B is a board and s ∈ V
is the start state.

The game is played as follows. A token is placed on the start state. The
player who owns the start state s, moves the token to one of its neighbouring
vertex u1 (through some outgoing edge with priority p0). The next move is
played by the owner of u1 who moves the token to one of its neighbouring
vertex through some outgoing edge with priority p1. Note that, it can happen
that s and u1 are owned by the same player. The game continues like this.
At any point in time, the token is in some vertex ui ∈ V . The owner of ui
moves the token to a next state through an outgoing edge with priority pi.

1

1. Parity Games A. V. Sreejith

The game continues like this forever. Notice that, because there are no sink
states, there is always a next move. An infinite sequence of moves is called
a run. Formally,

Definition 1.3 (run). A run is an ω-word (called omega word) over the
alphabet V × P . For example

(s, p0), (u1, p1), . . . , (ui, pi), . . .

Runs will be denoted by the symbol π. That is π ∈ (V × P)ω.

Notes on ω words: An omega word over the alphabet Σ can be thought
of as follows. Take the natural numbers, 1, 2, 3, Imagine that every
point in the natural number is assigned some letter from Σ. A trivial
example will be every point in the natural number is assigned to the
letter a ∈ Σ. This gives the omega word denoted by aω. Here is another
example. The word (ab)ω is got by assigning all odd numbers to a and
all even numbers to b. There is also a notion of regular languages over
omega words (these are those accepted by Büchi automata). A study
can be found here [13, 2]. Both the above examples we saw were regular
words. Here is a non-regular word. Let all primes numbers be assigned
letter a and all composite numbers assigned letter b.

Omega words, apart from the fact that they are beautiful mathe-
matical objects, are an abstraction which adds great value to simplify
mathematical arguments (similar to say, complex numbers). In many
situations, rather than arguing there is a “very long finite word”, we
can argue about an ω word. For example, the arguments in this lecture
notes can always be reworked by saying there are finite words which are
greater than some function of the game graph size. Working with ω
words simplify such type of arguments.

As a side track, there are also countable words which are words got
by assigning every point in rationals to some letter from the alphabet.
More about countable words can be found here [4, 5].

Who wins a run? We say that Even wins a run π if the maximum among
the set of all priorities which appear infinitely often in π is even. Otherwise
Odd wins the run.

Definition 1.4 (winner of a run). Let π ∈ (V × P)ω be a run. We denote
by FIN(π) to be the set of all letters which occur finitely often (which also

2

1.2. WINNERS AND STRATEGIES

includes letters which do not occur) and INF(π) the set of all letters which
occur infinitely often. That is,

FIN(π) = {(v, p) ∈ V × P | ∃j ≥ 1 ∀k > j π[k] 6= (v, p)}
INF(π) = (V × P) \ FIN(π)

We say that Even wins the run π if the maximum of the set of all priorities
occurring in INF(π) is even. That is, Even wins if the maximum of the
following set is even.

{p | (v, p) ∈ INF(π)}

We say that Odd wins π if Even does not win π. In other words, Odd wins if
the maximum of the above set is odd. Note that, because V and P are finite,
INF(π) is not empty and therefore the maximum is defined.

Let us look at the example given in Figure 1.1. The run ((a, 4)(b, 1))ω is
won by Even because 4 is the maximum among the priorities occuring in-
finitely often (which is {1, 4}). The run (a, 5)(c, 7)((b, 1)(a, 4))ω is also won by
Even for the same reason. On the other hand, the run π = (a, 5)((c, 2)(d, 3))ω

is won by Odd because 3 is the maximum among the priorities of INF(π).

Figure 1.1: A parity game. The
start state is marked with an in-
coming arrow. The vertices owned
by Even are shown as squares (even
side) and Odd by triangles. The
edges are labeled by priorities.

1.2 Winners and strategies

We will now look at who can win a game. Informally, a strategy of a player
is a mapping from every situation to a next move.

Definition 1.5 (Strategy). A strategy for Even is a function which maps
every finite word which ends in an even state to a next move. That is, it
is a mapping σ : (V × P)∗(V2 × P) → V . The strategy for Odd is defined
similarly. We say that σ is a winning strategy for Even if he wins all the
runs beginning at the start state, where he follows the strategy σ.

3

1. Parity Games A. V. Sreejith

We say that Even wins a game, if he has a winning strategy. We say
that Odd wins the game, if she has a winning strategy. First thing to ob-
serve is that given a game, both together cannot have a winning strategy.
The interesting observation by Büchi and Landweber [9] is that one of them
has a winning strategy. In literature this is often said as parity games are
determined.

Theorem 1.1 (determinacy of parity games). In any parity game, either
Even has a winning strategy or Odd has a winning strategy.

A stronger version of this theorem is proved in Section 1.3. The winner
of a game is the one who has a winning strategy. Before reading further it
will be good to look at the example in Figure 1.2 and identify who has a
winning strategy for the different start states.

Figure 1.2: The figure represents
a board for a parity game. Iden-
tify who wins for each of the par-
ity games got by starting the game
from different vertices. This figure
is from wikipedia.

You would observe that Even wins if the game starts from a. His winning
strategy is to move to h if he is in a or g. Let us analyze the strategy. When
the game starts, Even will move to h according to his strategy. Odd can now
choose to move to either a or g. Let us assume she moves to g. Then Even
will again move to h. Now if Odd moves to a, Even will again move to h.
Thus, no matter what, either priority 4 appears infinitely often or priority 6
appears infinitely often or both appears infinitely often. The winning region
of Even (respectively Odd) are the set of all vertices from which Even (resp.
Odd) has a winning strategy. Thus, the winning region for Even is {a, h, g}
and Odd is {b, c, d, e, f}. If you had worked this out yourself, you would have
observed the following. The winning strategy you came up with depends only
on the state the token is in and not on how the token reached that state.
This is called a positional strategy.

Definition 1.6 (positional strategy). A strategy σ is a positional strategy if
it depends only on the current vertex and nothing else. That is, a positional

4

1.2. WINNERS AND STRATEGIES

strategy for Even is a mapping σ : V2 → V from the set of all vertices owned
by even to V . Similarly, a positional strategy for Odd is a mapping from the
set of all vertices owned by Odd to V .

The following theorem says that if a player has a winning strategy then
he/she has a positional winning strategy.

Theorem 1.2 (positional winning strategy). In any parity game, the winner
has a positional winning strategy.

In Section 1.3, we prove this theorem along with the fact that parity
games are determined. Here is another interesting property which will be
used in the proof of above theorem. Let u and v be in the winning region for
Even. Then there is one positional winning strategy, σ with which Even can
win the game from both u and v. The below theorem generalizes this to one
strategy for all vertices in the winning region.

Theorem 1.3 (common strategy). For any parity game, there is a positional
winning strategy σ, such that if Even follows σ, it can win the parity game
from any vertex v in the winning region of Even.

We leave the proof of this to the reader. Figure 1.3 gives a positional
winning strategy for Even and Odd for the game given in Figure 1.2.

Figure 1.3: The winning strategy
for Even is given in red and Odd
is given in green. The winning re-
gion of Even is marked by light red
and Odd is marked by light green.

Exercise 1.1. Prove Theorem 1.3. For any parity game, there is a positional
winning strategy σ, such that if Even follows σ, it can win the parity game
from any vertex v in the winning region of Even.

5

1. Parity Games A. V. Sreejith

1.3 Positional determinacy of parity games

In this section, we prove that parity games are positionally determined.
Those who are not interested in the proof can skip this section. Our proof
closely follows the proof in [2]. First we give a claim whose proof is left as
an exercise.

Lemma 1.4. Let the parity game starting from vertex v be winning for Even.
Then for any vertex u reachable in the graph from v by following the winning
strategy of Even, is also in the winning region of Even.

We now show that parity games are positionally determined.

Theorem 1.5. For any parity board G, the wining regions of Even and Odd
partition the set of vertices. Moreover, there is one positional strategy for
Even (respectively Odd) following which Even (resp. Odd) can win the game
starting at any vertex in its winning region.

Proof. The proof is by induction on the number of priorities. It is easy to see
that the theorem holds for the base case where there is exactly one priority.
So, let us consider the game with d priorities. Without loss of generality we
assume d to be odd. Let B = (V, V1, V2, E, P, γ) be the board of the game.
Let W2 be the set of vertices from which Even has a positional winning
strategy and W1 be the set of vertices from which Odd has a positional
winning strategy. We are done if W1 ∪W2 = V . Let U = V \(W1 ∪W2) (see
Figure 1.4). We show by contradiction that U is empty. Let U be non-empty.
Here is a property of this partition.

Figure 1.4: The winning regions for
Even and Odd are represented by the
sets W2 and W1 respectively.

P1 If vertex u ∈ U is owned by Even, then u has no edge which takes it to
W2 (otherwise u will also be in W2). Similarly, if u is owned by Odd,
then u has no edge which takes it to W1.

6

1.3. POSITIONAL DETERMINACY OF PARITY GAMES

We first identify a set of vertices H ⊆ U from which player Odd can force
the game to take an edge of priority d in U . For example, let u ∈ U be a
vertex owned by Odd and it has an edge labelled d. Then u ∈ H. Here is
another example: if u is owned by Even and all its edges has priority d, then
u ∈ H.

Now consider the induced graph generated by the vertices U \ H. See
Figure 1.5. The following property holds in this subgraph.

P2 If edge (u, v) has priority d in the induced subgraph U \ H, then u is
owned by Even.

Figure 1.5: The set H consists of all
vertices from which Odd can force
the game to take an edge of priority
d in U .

Let G be the board obtained by the induced subgraph of U \ H and then
removing the edges whose priority is d. The following property holds in this
subgraph.

P3 The board G has atmost d − 1 priorities and therefore the induction
hypothesis holds. That is, G can be partitioned into winning regions A1

and A2 for Odd and Even respectively. Moreover, there is a positional
strategy for Even and Odd.

We now show that U is empty as follows

P4 The winning region A2 is empty: Assume not. Consider the following
positional strategy for Even in the original graph. In W2, Even will
play according to its strategy in B and in A2 it plays according to the
strategy in G. We show that this strategy is a win for Even starting
the game from the vertices in A2 in the original board B. So, let us
assume there is a vertex in A2 from which Even cannot win. This can
only happen if there is a vertex u ∈ A2 owned by Odd from which an
edge (u, v) such that v is in W1 ∪ A1 ∪H. We first note that v /∈ W1

because otherwise u would have been in W1. If v ∈ A1 ∪ H, then the
edge (u, v) should have the priority d (which was only the kind of edges
which were removed). But from property P2, we know that this cannot

7

1. Parity Games A. V. Sreejith

happen. Hence, the strategy is a win for vertices in A2 and therefore
these vertices should have been part of W2.

P5 The set A1∪H is also empty: Consider the following positional strategy
for Odd. In W1 she plays according to her strategy in B. In A1 she plays
according to her strategy in G and in H she plays the forcing strategy
which takes the edge with priority d. We prove by contradiction that,
this is a winning strategy for her from A1 ∪H. If not, there is a vertex
u ∈ A1 ∪ H such that (a) it is owned by Even and there is an edge
(u, v) and v ∈ W2, or (b) it is owned by Odd and for all edges (u, v),
we have v ∈ W2. Note that in both the case, u belongs to W2 (see
property P1). Hence the strategy is a win for Odd and therefore the
vertices in A1 ∪H should be in W1.

Thus we have that U is empty and therefore the board B is partitioned
into positional winning regions for Even and Odd.

8

Chapter 2

Parity games problem

The most important algorithmic question in parity games is to identify the
winning region for Even. Emerson, Jutla and Sistla [7] first showed that
Parity games is in NP and in co-NP. In the next section we show the same.
Marcin Jurdzinski [10] showed that this could be improved to UP ∩ co-
UP. But, we do not yet have a polynomial time algorithm. Infact, we do
not even know of a randomized polynomial time algorithm. It is easy to
show an exponential time algorithm. Various exponential algorithms and
subexponential algorithms has been proposed in literature (see [12, 11]). In
a recent breakthrough, Calude et.al [3] gave an O(nlog d) algorithm where n
is the graph size and d is the number of priorities. Soon other researchers
came up with different algorithms which give similar running time (see [6]).

Other versions of parity games: The usual definition for parity game
is different from our definition. Usually the vertex is assigned a priority
and not the edge. But this version is polynomial time equivalent to our
game. See Exercise 2.1.

Here is another variation. In our definition, Even wins a run if the
maximum of the infinitely occurring priority is even. We could have
thought about a different game, where we define the run to be a win for
Even if the minimum of the infinitely occurring priority is even. Note
that there is a polynomial time reduction from one game to the another.

A natural extension of the two player parity game is a three player
game, with the winner being decided based on the maximum priority
modulo 3. It turns out that computing the winning regions for the three
player game is not fundamentally different from the two player game.
See Exercise 2.2.

Exercise 2.1. In the vertex-parity game, each vertex is assigned a priority
and not the edge. Show that there is a polynomial time reduction to our parity

9

2. Parity games problem A. V. Sreejith

game which preserves the winning regions. Similarly give a polynomial time
reduction from our parity game to the vertex-parity game.

Exercise 2.2. Show that if we can solve the two player parity game in poly-
nomial time, we can also solve the three player parity game in polynomial
time.

Exercise 2.3. The parity games problem is polynomial time reducible to
games where the maximum priority is less than or equal to twice the number
of distinct priorities.

2.1 Parity game is in NP ∩ co-NP

In this section we show that parity games is in NP and co-NP. First a few
definitions.

Definition 2.1 (even cycle). A cycle in a parity graph is called an even cycle
if the greatest priority in the cycle is even. It is called an odd cycle if the
greatest priority is odd.

For example, in Figure 1.3 the cycle (abha) is an even cycle whereas
(bcdb) is an odd cycle . Note that, the definition of even and odd cycle here
is different from what is traditionally used in graph theory.

Let us first look at a simpler game. Consider a parity game where all
vertices are owned by Even. This game is called a one player parity game.
The winning condition for Even is exactly like in the two player game. In
this restriction, the winning region can be identified in polynomial time.

Theorem 2.1 (one player game). The winning region for Even in the one
player game can be decided in polynomial time.

Proof. We identify the winning region for Even as follows. Let C be all
vertices v which are part of an even cycle. This can be done in polynomial
time (checking whether there is an even cycle from v to v can be done by non-
deterministic logspace machine). Let R be all the vertices from which there is
a path to some vertex in C. This can also be determined in polynomial time.
We say that the winning region for Even is C ∪ R and leave the correctness
to the readers.

We are now in a position to show that parity games is in NP.

Theorem 2.2. The problem of checking whether Even has a winning strategy
in a parity game is in NP.

10

2.2. DETERMINISTIC ALGORITHMS FOR PARITY GAMES

Proof. From Theorem 1.2 we know that if Even has a winning strategy, then
he has a positional winning strategy, σ : V2 → V . The NP machine first guess
this strategy. It needs to now verify whether this guess is correct. For every
even vertex v ∈ V2, we remove all outgoing edges of v other than (v, σ(v). In
the resultant graph, every Even vertex has exactly one outgoing edge. We
now rename every Even vertex as an Odd vertex. This gives us an one player
game which can be decided in polynomial time by Theorem 2.1.

Note that, by a similar argument is also follows that the question of
whether Odd has a winning strategy is also in NP. Because of the symmetrical
nature of the problem, we get that parity games is also in co-NP.

Theorem 2.3. The problem of checking whether Even has a winning strategy
in a parity game is in co-NP.

Proof. We show that the problem of checking whether Even does not have
a winning strategy is in NP. From Theorem 1.1, we know that Even does
not have a winning strategy if and only if Odd has a winning strategy. The
latter problem is in NP due to Theorem 2.2 and hence parity games is also
in co-NP.

2.2 Deterministic algorithms for Parity games

In this section we look at deterministic algorithms which solve the parity
game problem. We first look at an O(nd/2) algorithm followed by the recent
O(nlog d) algorithm. We first show that the parity games can be solved by
a reduction to alternating graphs (see Section 2.3). The reduction is carried
out by building deterministic finite automatas. You would observe that the
reduction is polynomial in the size of the parity game as well as the automata.
This means, the question we will be interested in is, how small can the
automata be given a parity game. Unfortunately, we do not have automatas
of polynomial size. But we show that it is easy to build an automata of
O(nd/2) size which helps us resolve the parity games problem in same time.
With some effort, we can build an automata of size O(nlog d), thereby giving
us a faster algorithm. Our proofs follows the arguments in [2].

First, few definitions for building the automata. We say that an ω word
w ∈ (V × P)ω contains an even cycle (respectively odd cycle) if w contains
a cycle whose highest priority is even (respectively odd). For example

(a, 2)(b, 3)(c, 4)(d, 2)(b, 3)(c, 4) . . .

contains an even cycle since the highest priority in the factor (b, 3) . . . (b, 3)
is even. An ω word is called an even word (respectively odd word) if it do

11

2. Parity games problem A. V. Sreejith

not contain odd cycles (respectively even cycles). In other words, even words
contain only even cycles. Figure 2.1 gives a pictorial representation of even
and odd words.

Figure 2.1: The set of all ω words
are partitioned into even words,
odd words and words which contain
both even and odd cycles.

We now define, acceptance of ω-words by deterministic finite automata
(DFA). Normally, DFAs are defined for accepting finite words [8]. We modify
the acceptance condition here for ω words. Formally,

Definition 2.2. A DFA is given by D = (Q,Σ, δ, s, F) where Q is a finite
set of states, Σ is a finite alphabet, δ : Q× Σ→ Q is a Σ-labelled edge, s is
the start state and F is a set of final states.

An ω-word w is accepted by D if a prefix of w is accepted. In other words,
w is accepted by D if w can be written as uv where u ∈ Σ∗ and v ∈ Σω and
there is a path from s to an f ∈ F which is labelled by u.

We say that an automata separates even words from odd words, if the
automata accepts a language L which contains all even words and do not
contain any odd word. Note that we do not mind whether words which are
neither even or odd are in L or not. Figure 2.2 shows a separating language.
We are interested in DFAs which can separate even words from odd words.
That is, those DFAs which can accepts all even words and rejects all odd
words.

Figure 2.2: The language L sepa-
rates even words from odd words.

We show that using D we can reduce the parity games problem to reach-
ability in universal graphs.

12

2.3. REDUCTION TO ALTERNATING GRAPHS

Theorem 2.4. Let V ×P be an alphabet and D an automata which separates
even words from odd words. Then, there is an algorithm to decide parity
games in time O(size of parity game× size of D).

We prove the above theorem in Section 2.3. In Section 2.4 we give an
automata which separates even words from odd words in time O(nd/2) and
in Section 2.5 we give an automata of size O(nlog d).

2.3 Reduction to Alternating graphs

In this section we prove Theorem 2.4 by reducing the parity games problem
to reachability in alternating graphs.

Alternating graphs (see Alternating turing machines [1]) are defined as:

Definition 2.3. An alternating graph, G = (V, V∃, V∀, E) is a graph with
finite number of vertices denoted by V and edges E. The vertices are parti-
tioned into existential (V∃) and universal (V∀) vertices. We say that vertex
t is reachable from an existential state s if there is an outgoing neighbour
of s from which t is reachable. On the other hand, t is reachable from an
universal state s if t is reachable from all outgoing neighbours of s.

We are interested in the question of reachability of a vertex t from another
vertex s in an alternating graph. It can be shown that this is in deterministic
polynomial time. We leave the proof of this theorem which follows from some
standard results in complexity theory.

Theorem 2.5 (alternating reachability [1]). Reachability in alternating graphs
is in deterministic polynomial time.

Those who are comfortable with complexity theory can observe the fol-
lowing. Without the for all states, reachability is in non-deterministic log
space (and therefore in deterministic polynomial time). With the for all
states, reachability can be done in alternating log space. This complexity
class is equivalent to deterministic polynomial time.

We now prove Theorem 2.4 by reducing parity games to reachability in
alternating graphs. Let us restate the theorem.

Theorem 2.4. Let V ×P be an alphabet and D an automata which separates
even words from odd words. Then, there is an algorithm to decide parity
games in time O(size of parity game× size of D).

13

2. Parity games problem A. V. Sreejith

Proof. Let B = (V, V1, V2, E, P, γ, s) be the parity game and D = (Q, V ×
P, δ, s′, F) be the DFA which separates even words from odd words. Without
loss of generality we assume s ∈ V2, that is s is owned by Even. Consider
the alternating graph G = (K,K∃, K∀, T) where K = V × Q, K∃ = V2 × Q
and K∀ = V1 ×Q. The edges are drawn as follows. There is an edge

(u, q)→ (v, r)

in T , if there is an edge
u

p−→ v

in B and an edge

q
(u,p)−−→ r

in D. We claim that Even has a winning strategy in B if and only if one of
the states V × F is reachable from (s, s′) in the alternating graph G. The
proof has to be filled.

2.4 The O(nd/2) separating automata

In this section we give an automata of size O(nd/2) which separates even
words from odd words over the alphabet Σ = (V × P). Here P is the set
of all priorities. We also denote by n the cardinality of V and by d the
maximum priority in P . Note from Exercise 2.3 that, d can be atmost twice
the number of priorities in P . Recall that even words are ω words which
contains only even cycles.

We first identify the separating language and then construct a determin-
istic finite automata which accepts the language. We say that an ω word w
is nice if w can be written as u1(a, p)u2(b, p)u3 such that it satisfies all the
following properties:

1. p is an even priority.

2. (a, p), (b, p) ∈ Σ, u1, u2 ∈ Σ∗ and u3 ∈ Σω.

3. The factor u2 do not contain any priority greater than p.

4. The number of letters with priority p in u2 is n− 1.

Note that in a nice word, there is a factor which is an even cycle (for eg.
(a, p)u2(b, p) is an even cycle). But also observe that we have a restriction
on the kind of even cycle in a nice word. The even cycle should contain

14

2.4. THE O(ND/2) SEPARATING AUTOMATA

n + 1 occurrence of the highest even priority. The language we propose for
separation is

L = {w | w is a nice word}

Before we give a DFA which accepts L, let us show that it separates even
words from odd (see also Figure 2.3).

Theorem 2.6. All even words are in L whereas all odd words are not in L.

Proof. From the definition of nice word, it contains an even cycle. Therefore
odd words are not in L. On the other hand, consider an even word w ∈
Σω. Since Σ is finite and because w contains only even cycles, there is a
letter (a, 2p) which occur infinitely often and hence there is an even cycle
with priority 2p occurring more than n times. This word is therefore in the
language L.

Figure 2.3: The nice words sepa-
rates the even words from the odd
words.

Finally we give an automata which recognize L.

Theorem 2.7. There is a deterministic finite state automata over the al-
phabet V ×P of size O(nbd/2c) which recognize the language L. Here n = |V |
and d = 2|P |.

Proof. The automata needs to recognize all nice words. For this, every state
in the automata keeps a register for every even priority (that is, every state
has bd

2
c registers). The ith register (where i is even) keeps track of the number

of letters with priority i after the last letter with a priority greater than i.
Once this count in register i reach a value greater than n, the automata goes
to a unique final state and remain there. We elaborate the transitions of the
automata now. Let k be the count of register i at some stage of reading the
word. We do a case analysis based on the next letter.

• next letter is (a, p) where p = i and k = n: Since we have now identified
that the word is nice, the automata moves to a final state and continue
to remain there.

15

2. Parity games problem A. V. Sreejith

• next letter is (a, p) where p = i and k < n: The automata increases the
register value of ith register to k + 1. All registers numbered less than
p is reset to zero. No change in other registers.

• next letter is (a, p) where p < i: Value of ith register in remains the
same. All registers numbered less than p is reset to zero. No change in
other registers.

• next letter is (a, p) where p > i: The value of ith register is reset to
zero. All registers numbered less than p is reset to zero. No change in
other registers.

It is clear that the automata recognize the language L. We will now analyze
the number of states in this automata. Since every even register counts from
0 to n, we require (n + 1)bd/2c states other than the final state. Hence the
total number of states is

(n+ 1)bd/2c + 1 = O(nbd/2c)

In the next section we construct another dfa which uses less space.

2.5 The O(nlog d) separating automata

16

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[2] Mikolaj Bojanczyk and Wojciech Czerwinski. An automata toolbox.

[3] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and
Frank Stephan. Deciding parity games in quasipolynomial time. In
Hamed Hatami, Pierre McKenzie, and Valerie King, editors, STOC,
pages 252–263. ACM, 2017.

[4] Olivier Carton, Thomas Colcombet, and Gabriele Puppis. An algebraic
approach to MSO-definability on countable linear orderings. J. Symb.
Log., 83(3):1147–1189, 2018.

[5] Thomas Colcombet and A. V. Sreejith. Limited set quantifiers over
countable linear orderings. In Automata, Languages, and Programming
- 42nd International Colloquium, ICALP 2015, Proceedings, Part II,
pages 146–158, 2015.

[6] Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-
polynomial algorithm for mean-payoff parity games. In Anuj Dawar and
Erich Grädel, editors, LICS, pages 325–334. ACM, 2018.

[7] Emerson, Jutla, and Sistla. On model checking for the mu-calculus and
its fragments. TCS: Theoretical Computer Science, 258, 2001.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, Reading, Mass., 1979.

[9] J.R. Büchi and L.H. Landweber. Solving sequential conditions finite-
state strategies. Trans. Ameri. Math. Soc., 138:295–311, 1969.

[10] Marcin Jurdzinski. Deciding the winner in parity games is in up and
co-up. Inf. Process. Lett, 68(3):119–124, 1998.

17

BIBLIOGRAPHY A. V. Sreejith

[11] Marcin Jurdzinski. Small progress measures for solving parity games.
Lecture Notes in Computer Science, 1770:290–??, 2000.

[12] Marcin Jurdzinski, Mike Paterson, and Uri Zwick. A deterministic
subexponential algorithm for solving parity games. SIAM J. Comput,
38(4):1519–1532, 2008.

[13] Wolfgang Thomas. Handbook of formal languages, vol. 3. chapter
Languages, Automata, and Logic, pages 389–455. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

18

	Parity Games
	Introduction
	Winners and strategies
	Positional determinacy of parity games

	Parity games problem
	Parity game is in NP co-NP
	Deterministic algorithms for Parity games
	Reduction to Alternating graphs
	The O(nd/2) separating automata
	The O(nlogd) separating automata

