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1 Introduction

Currently the entire world is going through a nightmare and everyone wishes to know how
long this nightmare will last, and what its toll will be. A number of academic groups across
the world are carrying out data driven predictions in answer to these questions; Predictive
Monitoring of COVID-19 from the SUTD Data Driven Innovation Lab of the Singapore
University of Technology and Design is one such example. (https://ddi.sutd.edu.sg/,
links to other such efforts can be found there.) Most of these efforts make use of a mathe-
matical model of infection spread, usually the SIR model, or one of its variants like SEIR
or SIRD etc., and then learn certain model parameters from the publicly available data of
the infection in a region to make predictions for the region. Learning model parameters is
done by, what is called in statistics and machine learning parlance, regression. The most
used regression method is linear regression which essentially is taking the projection of a
vector on to a linear space. The purpose of this note is to explain the SIR model and how
the evolving infection data is used to fix the SIR model parameters. We refer to [He00]
for a survey of the SIR model, its variants, and how effective such a model is in modeling
certain past epidemics. Any standard text on linear algebra, e.g., [St06] explains what is
the projection of a vector on to a linear space.

2 The SIR model

Our description of the model follows The SIR Model for Spread of Disease– The Differ-
ential Equation Model by David Smith and Lang Moore [SM04]. SIR is the acronym for
Susceptible-Infected-Recovered. The model aims at capturing quantitatively the spread of a
new infectious disease in a closed community of N individuals; the disease being new implies
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that no one in the community has a priori immunity from the disease, infectious implies that
an infected individual can potentially infect any uninfected one coming in contact with the
infected individual, and the community being closed means that there is no movement in
and out of the community, and therefore, throughout the life of the disease, the population
remains the same, namely, N . Unfortunately, some individuals may succumb to the disease,
and yet the assumption that the population remaining the same does make sense in terms
of the model. We will point out the reason later.

The model uses time, t, as the independent variable, usually measured in the unit of days,
and has three dependent variables:

• S(t): The number of of individuals susceptible to the disease at time t,

• I(t): The number of individuals already infected, and

• R(t): The number of individuals who have recovered from the disease.

The model assumes that once recovered, an individual develops the required immunity which
protects him from getting infected again. Also, having recovered, a person will not infect
anyone else. The model includes the individuals who succumb to the disease amongst the
recovered set, as a deceased individual, like a recovered person, will not catch the disease
again, nor will he infect anyone else. As the model aims to study the spreading process,
this (seemingly bizarre) decision of including the deceased amongst the recovered set is
justifiable. 1

We therefore have that
S(t) + I(t) +R(t) = N (1)

for all time t.

The above implies
dS

dt
+
dI

dt
+
dR

dt
= 0 (2)

The model defines what these three derivatives are making use of two parameters b and k,
and these parameters are defined as follows:

• b: This parameter is a constant which is defined to be the fixed number of contacts that
an infected individual has per day. Defining s(t) to be S(t)/N , namely, the proportion
of the population which is susceptible, of the b contacts per day made by an infected
individual, bs(t) will be the number of individuals who are susceptible in expectation,
making the convenient uniformity assumption that the contacts of the infected person
is similar in characteristics to that of the entire population. A slight rewrite: This
parameter is a constant which is defined to be the fixed number of contacts that an

1We note that the model can be easily modified to have the deceased as a separate category as well.

2



infected individual has per day. Defining s(t) to be S(t)/N , namely the proportion of
the population which is susceptible, bs(t) will be the number of susceptible individuals
in contact with an infected person. We make the convenient uniformity assumption
that the contacts of the infected person are similar in characteristics to that of the
entire population.

• k: It is assumed that a fixed fraction of the infected individuals joins the recovered
group each day. k denotes this fixed fraction.

Using the definitions of S(t), R(t), and I(t), and s(t), and the definitions of the two param-
eters, we get the following:
Rate of change of the number of susceptible:

dS(t)

dt
= −bs(t)I(t) (3)

Rate of change of the number of recovered:

dR

dt
= kI(t) (4)

Using Equations 2, 3, and 4, we get the rate of change of the number of the infected:

dI

dt
= bs(t)I(t)− kI(t) (5)

As s(t) monotonically decreases with time, whereas k remains a constant fraction, the rate
of change in the number of infected will decrease with time, and the graph of I(t) will have
a bell-like appearance. Initially, for a certain interval, I(t) will keep on increasing till it
peaks, and then I(t) will decrease with time, and eventually the infection will die out.

3 Learning best values for model parameters from data

We may think of the above (5) as a continuous dynamical system. Making first-order Euler
discretization of the above continuous system, we get a discrete dynamical system (In)n≥0.
For n = 1, 2, . . .

In = In−1 + (bsn−1In−1 − kIn−1)∆t (6)

where In denotes the number of infected at the nth time step, usually the time step is a
day. Setting ∆t to 1 as we study the evolution of the dynamical system in terms days, we
get:

(sn−1In−1)b− In−1k = In − In−1 (7)

for all n ≥ 1. On day 0, only a tiny fraction ε of the population is infected, that is, I0 = εN ,
and s0 = 1− ε.
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Suppose, we observe the data of the number of the infected people, and the number of the
recovered people for every day for the first m+1 days, starting from the 0th day. We would
like to use this data for estimating b and k. Using the relation (7), the data2 give rise to m
equations in two unknowns b and k:

cj1b+ cj2k = wj , 1 ≤ j ≤ m (8)

where cj1 is sj−1Ij−1, cj2 is −Ij−1, and wj is Ij − Ij−1, that is, the new cases found on the
jth day.

Let y denote the column vector of the unknowns

[
b
k

]
Then, in the matrix form, the above m equations give us a system of equations

Cy = w

The system above will most surely be inconsistent, we cannot simply solve for y. Instead,
one finds a ŷ in the column space of C such that with this ŷ, ‖Cŷ − w‖ is minimized. The
rationale is that, so far as the observed data is concerned, the vector Cŷ−w is the error for
the choice of ŷ as the ’solution’ of the system of equations, and therefore, the norm of the
error vector is minimized for the best result. Geometrically, it is evident that ‖Cŷ−w‖ will
be minimized when Cŷ is the projection of w on to the column space of C, that is, when
the vector Cŷ−w is orthogonal to the column space of C, which will happen when Cŷ−w
is orthogonal to each column of C. In other words, we seek a ŷ for which

CT (Cŷ − w) = 0

That is,
CTCŷ = CTw (9)

Claim 1 If columns of C are independent, then CTC is invertible.

A geometric way to see why C and CTC has the same null space. Let CT (Cx) = 0 for
some x and let z = Cx. Clearly z is in the column space of C. On the other hand CT z = 0
Therefore, z is perpendicular to all the rows of CT . In other words, z is perpendicular to the
column space of C. Combining we get, z is both perpendicular to the column space and is in
the column space. This can only happen if z = 0 which implies Cx = 0. The claim follows
from the observation that both C and CTC have the same null space, i.e., for all x, Cx = 0
iff CTCx = 0. Clearly, if Cx = 0, then CT (Cx) too will be 0. On the other direction, let
CTCx = 0. Multiplying both sides of the equation by xT , we get xTCTCx = 0, This can
be re-written as (Cx)TCx = 0, which implies Cx = 0. Since columns of C is assumed to be

2We need the data for both the infected and the recovered to fix sp, for p ≥ 1.
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independent, null space of C is the trivial one, namely, {0}. CTC too then has only 0 in its
null space, therefore, CTC is invertible. Using the invertibility of CTC, we get from (9):

ŷ = (CTC)−1CTw

This ŷ =

[
b̂

k̂

]
is what we learn from data as the best values for parameters b and k. We

note that in practice the two columns of C will surely be found to be linearly independent,
as the two entries of the two columns of C of a row make use of the infection data of a
particular day, and the infection spread over days is certainly a nonlinear process.

4 An illustration

5 Discussion

How good is the SIR based predictive modeling? Clearly, the SIR model makes certain
assumptions which do not hold in practice: the population is never closed entirely– there will
certainly be some movements in and out of a region of interest. The uniformity assumptions
in the model are also not realistic– usually a child makes more contacts per day than an
adult does, and as different parts of the region of interest have different population densities,
their contact numbers will also be different. Having a fixed k is also not realistic– different
classes of people will have different recovery rates– and also evolving treatment regimes are
likely to make k a varying entity with time. Further, not all infected cases are detected,
therefore, the data used for fixing the model parameters are also flawed. The model does
not take into account societal interventions like lock downs, quarantine, etc. In many cases,
as in India, testing becomes more extensive with the progress of time, therefore, giving
equal status to the data of each day may itself be faulty. Extensions of the SIR model that
address some of these issues have been proposed, we refer to [ABDSS20] for a recent survey.

At the same time, the very simplicity of the basic SIR model is also its greatest strength–
in the face of many uncertainties, the uniformity assumption is quite reasonable as there
is likely to be an averaging effect. As [He00] shows, the basic SIR model has been quite
successful in modeling many past infections. In the case of the current pandemic, the SIR
predictive model predictions are not as catastrophic as the scenarios that some people have
come up with. This, if nothing else, gives us at least the courage to face the future with
some amount of equanimity!

References

[ABDSS20] Abadie, Alberto, Paolo Bertolotti, Ben Deaner, Arnab Sarkar, and Devavrat
Shah, Epidemic Modeling and Estimation, Memo of the IDSS COVID-19 Collabora-

5



tion Project, Institute of Data Science and Society, MIT, 2020.

[He00] Hethcote, Herbert W., The Mathematics of Infectious Diseases, SIAM Review, Vol.
42, No. 4 (Dec., 2000), pp. 599–653, 2000.

[SM04] Smith, David and Lang Moore, The SIR Model for Spread of Disease, Convergence,
Mathematical Association of America, December 2004.

[St06] Strang, Gilbert, Linear Algebra and its Applications, 4th Edition, Thomson
Brooks/Cole, 2006.

6


	Introduction
	The SIR model
	Learning best values for model parameters from data
	An illustration
	Discussion

