Turbulent flows (ME625)

Instructor: Dr. Sudhakar Yogaraj

School of Mechanical Sciences, IIT Goa.

Exercise problems on index notation

While converting equations into indicial notation, it will be helpful to denote coordinate axes as (x_1,x_2,x_3) in the full equations instead of (x,y,z). Similarly, use corresponding notation to denote components of a vector $u=(u_1,u_2,u_3)$. For example, write continuity equation as

$$\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} = 0 \tag{1}$$

instead of

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \tag{2}$$

This will help you to quickly get used to indicial notation.

Write the following in tensor notation. For each equation in indicial notation, denote the free- and dummy-indices. Always write the expanded form, and introduce free- and dummy indices.

- 1. Dot product of two vectors. Write also the same in terms of Kronecker delta function.
- 2. Matrix-vector multiplication
- 3. Matrix-matrix multiplication
- 4. Cauchy equation
- 5. Strain rate tensor
- 6. Relation between shear stress tensor and rate of strain tensor
- 7. Navier-Stokes equations
- 8. Write Navier-Stokes equations and introduce Kronecker delta function in the pressure gradient term.
- 9. Write the following vorticity equation component-wise, and explain why 9 components of the vortex stretching term will be zero in case of a 2D flow

$$\frac{\partial \Omega_i}{\partial t} + u_j \frac{\partial \Omega_i}{\partial x_j} = \Omega_j \frac{\partial u_i}{\partial x_j} + \nu \frac{\partial^2 \Omega_i}{\partial x_j \partial x_j}$$
(3)

- 10. What is the value of δ_{ii} ?
- 11. For velocity field (u_i) associated with incompressible flows, prove the following.

$$\frac{\partial^2 u_i}{\partial x_j \partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \tag{4}$$